

Davidson Environmental Limited

Post-remediation monitoring of sediments and biota from estuarine sites located adjacent to the former Fruitgrowers Chemical Company (FCC) site, Mapua, Nelson

Research, survey and monitoring report number 616

A report prepared for: Tasman District Council and Ministry for the Environment C/o Tasman District Council 189 Queen Street Richmond Nelson

By Rob Davidson, Laura Richards & Jenny Easton

Bibliographic reference:

Davidson, R. J.; Richards, L.A.; Easton, J. 2010. Post-remediation monitoring of sediments and biota from estuarine sites located adjacent to the former Fruitgrowers Chemical Company (FCC) site, Mapua, Nelson. Prepared by Davidson Environmental Limited for Tasman District Council and Ministry for the Environment. Survey and monitoring report no. 616.

© Copyright

The contents of this report are copyright and may not be reproduced in any form without the permission of the client.

Prepared by:

Davidson Environmental Limited P.O. Box 958 Nelson 7040 Phone 03 5452600 Mobile 027 4453 352 e-mail davidson@xtra.co.nz

January 2010

Summary

Marine areas adjacent to the former Fruitgrowers Chemical Company (FCC) site were sampled in Spring 2009. Sampling included:

- Pesticides in sediment (shallow 0-2 cm, deep 10-20 cm);
- Pesticides in molluscs (mudflat snail, topshell snail, cockle);
- Total organic carbon (TOC) in shallow and deep sediments;
- Particle analysis from selected shallow and deep sediments;
- Invertebrate community composition and abundance from surface and within sediment samples; and
- Macroalgal distribution and percentage cover.

The sampling regime was based on recommendations made in the site auditors report (Pattle Delamore 2009). Where possible, sites previously sampled were adopted for on-going monitoring.

Three of 26 deep marine sediment samples adjacent to the FCC met the DDX (DDT, DDE, DDD) Soil Acceptance Criteria (SAC), while approximately 70% or 18 of 26 samples for ADL (aldrin, dieldrin, lindane) achieved the SAC.

In sediments where the SAC was exceeded, DDX and ADL concentrations were dramatically lower than values recorded prior to remediation.

Small increases in ADL and DDX were recorded at some sites. Reasons for these relatively small increases are most likely related to re-contamination of remediated sediment from the FCC site during remediation and via natural movement of marine sediments from offshore and adjacent areas. Highest DDX and ADL values were recorded from the West Stream, West estuarine stream channel, a low-lying area in the central area of the West FCC shore, and southern parts of the East FCC shore.

Moderate levels of nutrient enrichment occurred in Eastern and Western FCC marine sediments. Enrichment of sediment is probably from water runoff via the numerous seepages flowing from the FCC site. Enrichment has not resulted in anaerobic conditions or a change in community composition; however, numbers of some species may be elevated due to nutrients and their effect on environmental variables such as food availability.

Present levels of pesticide in marine sediments have not resulted in a decrease in invertebrate community diversity or abundance.

ADL and DDX levels in cockles were comparable to other areas in New Zealand considered representative of contaminated sites. These sites have usually been located close to large cities or development. Contaminants in cockles were, however, relatively low when compared to many contaminated sites overseas and were below the US and Canadian limits for the protection of human health.

ADL and DDX levels in mudflat snails from the West FCC shore were unusually high relative to previous samples. This was in contrast to contaminant levels recorded from the sediment snails were living on (i.e. DDX and ADL values declining in sediment). The reason for this result remains a mystery.

The second sampling event is due in Spring 2010. These data will provide more information on contaminant levels and the reasons for those patterns.

1.0 Background

Historic environmental investigations carried out at Mapua have found elevated concentrations of contaminants in marine sediments adjacent to the FCC site. The major contaminants of concern were organochlorine pesticides (OCPs), which include DDT, DDD and DDE (collectively known as DDX), and aldrin, dieldrin and lindane (collectively known as ADL). A decision was made to remediate the site to prevent further effects on the marine environment. Following initial trials, remediation works commenced in October 2004 and were completed in early 2008. The remediation Validation Report was submitted to MfE in December 2008. The site has remained vacant since remediation was completed.

During the works, two areas of foreshore adjacent to the FCC site were included in the remediation:

- the tidal beach in Mapua Channel located to the east of FCC East; and
- the tidal mudflats in Waimea Inlet located to the south of FCC Landfill, including a tidal channel that crosses the mudflats (the "swale"). Also included was a section of the tidal creek running along the north-west edge of FCC Landfill. This Stream carries stormwater from adjacent housing developments.

The extent of contamination at these locations was broadly defined by previous investigation results and additional sampling during the remediation works. Based on the pre-remediation results, a surface layer of contaminated sediment was excavated down to the low tide contour in East FCC. In the west, the creek (for most of its length adjacent to the site), part of the foreshore, and part of the tidal swale were excavated and backfilled. The removal of contaminated sediments was completed in a series of cells, each backfilled with imported gravels after validation sampling from the base of the excavation. The resource consent required that excavated cells were sampled and backfilled within one tide. Consequently, the excavations were backfilled before the validation test results were received.

In June 2009, the audit report for the remediation of the former Fruitgrowers Chemical Company site, Mapua, was completed (Pattle Delamore Partners Ltd. 2009). The auditor provided a comprehensive document that included a variety of recommendations with respect to monitoring marine sediments and biota. The general recommendations are outlined below, while the full recommendations can be viewed in Chapter 6 of the audit report).

The auditor has stated with respect to the marine sediments that:

"It is considered that remediation to the extent practicable has been broadly achieved in the marine foreshore areas. The benefits of further remediation are likely to be outweighed by the additional disruption and impacts to the environment. It is clear that the remediation in these areas has not been successful in meeting the SACs for DDX and ADL. However, re-

deposition of non-complying sediment from the surrounding marine environment probably meant that compliance with the SACs could not be achieved within the foreshore surface sediments. In addition, re-contamination of the deeper backfill material has occurred during the remediation works. The mechanism(s) for this are not clear, but site runoff is probably a major contributor. While contamination remains within the backfilled material, there is evidence that the surface sediment quality has been improving since completion of the remediation. A key aspect of the foreshore remediation is the removal of the site as a source of ongoing sediment contamination. This will allow natural attenuation processes to slowly improve the foreshore sediment quality over the coming years. Apart from localised effects on the marine ecosystem, the effects of the residual sediment contamination on other receptors are not likely to be significant. In the case of risks to human health via seafood consumption, additional data is required to confirm this as the current dataset is limited."

The auditor stated with respect to monitoring that:

"Sediment and snail sampling should continue, following a review of the sampling design to ensure it is adequately quantifying the risk via seafood consumption and is properly representing the quality of the surface sediments. The health and diversity of the foreshore ecosystems should be benchmarked relative to suitable control sites elsewhere in the Waimea Inlet. The information will contribute to assessing the significance of the residual contamination in the foreshore sediments and the local effects of contaminated groundwater discharge. The current annual monitoring of sediment and biota by TDC should be continued and expanded.

The aim of the monitoring will be to:

- 1. confirm OCP concentrations in snails (as appropriate bio-indicators) remain below levels that might present an unacceptable risk to human health;
- 2. confirm apparent improving trends in the chemical quality of shallow sediment using a larger sample set; and
- 3. provide additional information on localised effects of nutrients in groundwater discharges on the foreshores (see Section 7.10.2 of the audit report)."

The present document presents data collected during the first sample event during Spring 2009 and provides a comparison, where possible, with data collected previously by various authors.

2.0 Site history

The following section on the history of operations at the site has been extracted from the auditors report.

FCC operated an agrichemical formulation plant on FCC East and West from 1932 until 1988, producing pesticides, herbicides and fungicides that were used throughout the country. The north-eastern portion of FCC East was operated by a subsidiary company, originally known as Lime and Marble Limited and later as Mintech Ltd. The Mintech site was generally used for processing non-toxic minerals but also included the FCC micronising plant and some biocide preparation. Facilities used for agrichemical formulation and storage were operated on both FCC East and West.

From the 1950s, a number of areas were either in-filled or reclaimed, including: low lying areas of FCC East; the area now known as FCC Landfill, reclaimed from the Waimea Inlet; and the eastern portions of FCC East, reclaimed from the Mapua Channel. The fill material used contained waste material from site operations.

FCC ceased operations in 1988 and by 1996 TDC had either inherited or acquired the FCC portions of the site, i.e. FCC Landfill, FCC West and FCC East. FCC Landfill was inherited first, in the early 1990s. In May 1992, TDC installed a clay cut-off wall along the southern edge of FCC Landfill to reduce leachate migration into the Waimea Inlet. From the early 1990s onwards, the site was the subject of a number of environmental investigations and assessments. It was clear from the investigation results that some form of remediation or management of residual contamination at the site was required. Elevated contaminant concentrations were detected in soil on and adjacent to the site, groundwater and in nearby marine sediments. The major contaminants of concern which drove the need for remediation were organochlorine pesticides. Other contaminants included heavy metals, organonitrogen pesticides, organophosphorous pesticides, petroleum hydrocarbons, acid herbicides and elemental sulphur.

The peak soil concentrations were typically found in the vicinity of historical process areas. Marine sediments appear to have been contaminated from site runoff and drainage, including from the landfill, to the nearby estuary and Mapua Channel – see next section.

A decision was made to remediate the site after initial plans for capping the site were set aside. Soil treatment trials to select an appropriate technology were carried out in 1999 – 2000. Resource consents for the remediation were granted in November 2003.

3.0 Previous estuarine contaminant studies

Woodward Clyde (1996) presented contaminant monitoring data for a variety of biota sampled from estuarine habitats adjacent to the FCC site (east, west and general area). The species sampled included mudflat snail (*Amphibola crenata*), cockle (*Austrovenus stutchburyi*), green-lipped mussel (*Perna canaliculus*), and Pacific oyster (*Crassostrea gigas*). Most sampling occurred from areas adjacent to the FCC site between 1993 and 1996.

Landcare Research scientists sampled contaminants from sediments at upper and lower catchment positions of the western mudflat channel, as well as a western mudflat site (Tahi Street) and eastern site located adjacent to the FCC site (O'Halloran and Cavanagh 2002; Cavanagh and O'Halloran 2003). These authors also sampled contaminants from mudflat snail (*Amphibola crenata*), crab (Grapsid family), short-finned eel (*Anguilla australis*), cockle (*Austrovenus stutchburyi*), and Pacific oyster (*Crassostrea gigas*). They also collected samples from a control channel and a control mudflat site.

The authors reported that crabs and cockles did not accumulate high levels of organochlorine contaminants compared to snails (*Amphibola*). The authors reported that, apart from eels, snails accumulated much higher concentrations of organochlorine contaminants compared to other organisms sampled. Cavanagh and O'Halloran (2003) recommended that snail (*Amphibola*) was the most appropriate bioindicator to assess the success of remediation of the FCC site and its associated contaminated areas. The authors also recommended that some "opportunistic sampling be conducted of higher animals such as eels inhabiting the drain".

TDC has sampled contaminants from sediments and snails on a number of occasions since 2005 (Easton 2005; 2007a; 2007b; 2008; 2009; 2009a, 2010). Two sets of sampling sites have been used in repeat monitoring programmes. Sample of sediment and snail contamination were collected along the western estuary parallel to Tahi Street (Easton 2007b, 2009). Another set of sample sites were repeat monitored for snail and sediment contamination as part of the consent condition 522/19 requiring testing of the sediments and macroinvertebrates 12, 24 and 36 months after the coastal marine area remediation (Easton 2007a, 2008, 2009a). It is the latter set of samples that the site auditor suggested should be repeat sampled on at least two more occasions prior to a review of monitoring.

TDC sampled snails (*Amphibola crenata*) from the West FCC site and from a control site located further westward in the Waimea Inlet. Following remediation of the east FCC tidal shore, mudflat snails failed to recolonise. The author instead sampled a topshell (*Diloma subrostrata*). This species was also sampled from a control area located further eastwards in Waimea Inlet. *D. subrostrata* lives on a combination of rock, shell and soft substrata. Bioaccumulation levels recorded for this species were consistently lower than levels recorded for *Amphibola* samples collected from the west FCC site.

Following the present studies sampling regime the TDC sampled sediment and mudflat snail contaminants from JMB 084 located at the West FCC shore in January 2010 (Easton 2010).

4.0 Review of biological sampling

The auditor recommended that:

Prior to undertaking the next sediment and snail monitoring round, an appropriately qualified person should review the monitoring programme to confirm that the current programme is sufficient and appropriate given the altered habitat and different species that have re-colonised East FCC. The review should assess the previous reports on the subject, including that by Landcare Research (2002), and take into account recent monitoring data and the likely site use. Consideration should be given to the need for confirmatory sampling of other biota and extending the programme to improve its statistical robustness. The review should also consider whether the sampling is properly representing the quality of the surface sediments.

Davidson (2009) provided a review report and concluded that:

- 1. West FCC site: no change to the existing sampling protocol.
- 2. East FCC site: (1) collect an additional one or up to two mudflat snail composite samples; (2) at present, one topshell sample is collected from the East FCC site. It is recommended that two topshell samples from the East FCC site be collected on the first sample occasion (i.e. one sample from hard substrata and one sample from soft substrata).
- 3. East FCC site: one cockle sample should be collected from the East FCC site on each sample event.

5.0 Methods (present study)

Three broad types of monitoring were conducted in the marine environment adjacent to the FCC site, Mapua: (1). organism and sediment contaminant sampling (OPC's), (2) environmental variable sampling (total organic carbon, particle size analysis, redox cores), and (3) biological community sampling (invertebrate density and size, macroalgae cover). A summary of the laboratory methods and tests are displayed in Appendix 6.

5.1 Mollusc and sediment contaminant sampling

On 20th October 2009, sediment and invertebrates were sampled from the estuary adjacent to the FCC site and controls and sent to Hill Laboratories for analysis. Sediment was collected from two strata, (1) surface (0-2 cm) and (2) deep (10-20 cm) (Table 1, Figures 1 and 2). Surface samples were collected using a stainless steel sampler from undisturbed substratum at each sample site. Deep sites were sampled by first extracting a core of sediment followed by the collection of the sample using a stainless steel sampler. All

samples were placed in containers supplied by Hills Laboratories. Samplers were thoroughly washed between each sample and site.

An additional three contaminant samples were collected from the stream flowing adjacent to the West FCC site on the 10th November 2009. All stream sediment samples were collected from the surface layer (Table 1, Figure 1).

A variety of invertebrates were collected for contaminant analysis from FCC impact and Waimea Inlet control sites on 20th October 2009 (Table 2, Figures 3 and 4). At one control site and two impact sites (West FCC and East FCC), the mudflat snail (*A. crenata*) was collected for analysis. The topshell (*Diloma subrostrata*) was sample from an East FCC site. Based on the review by Davidson (2009), topshell that lived on (a) mud or (b) rock substratum were collected and kept separate for analysis. In addition, a cockle sample was collected from the East FCC site and an appropriate control located adjacent to Hunter Brown Reserve, some 1.4 km south-east of Mapua (Table 2, Figures 3 and 4).

Invertebrates were collected by hand using a haphazard sampling technique from an area of approximately 10m² at each site. The only exception was the composite mudflat snail sample collected at the East FCC site (see yellow area in Figure 3). At this site, mudflat snails were rare; therefore the whole shoreline was used to provide sufficient snail specimens for analysis.

All invertebrates were kept in seawater for a period of 24 hours prior to transportation to Hill Laboratories to enable sediment purging from their digestive tracts prior to analysis. Fresh seawater was replaced periodically during this period to ensure their survival during this process.

Туре	Site number	Coordinates	Strata	OCP surface	OCP deep	TOC (surface)	TOC (deep)	Particle (surface)
West control	JME 080	41° 15.482'S, 173° 5.540'E	0-2 cm & 10-20 cm	1	1	1	1	1
Impact (west)	JME 083	41° 15.463'S, 173° 5.819'E	0-2 cm & 10-20 cm	1	1	1	1	1
Impact (west)	JME 081	41° 15.484'S, 173° 5.821'E	0-2 cm & 10-20 cm	1	1	1	1	1
Impact (west)	JME 082	41° 15.501'S, 173° 5.825'E	0-2 cm & 10-20 cm	1	1	1	1	
Impact (west)	West FCC new 1 (west)	41° 15.471'S, 173° 5.849'E	0-2 cm & 10-20 cm	1	1	1	1	
Impact (west)	West FCC new 2 (middle)	41° 15.473'S, 173° 5.867'E	0-2 cm & 10-20 cm	1	1	1	1	1
Impact (west)	West FCC new 3 (east)	41° 15.480'S, 173° 5.879'E	0-2 cm & 10-20 cm	1	1	1	1	
Impact (west)	JME 084	41° 15.484'S, 173° 5.859'E	0-2 cm & 10-20 cm	1	1	1	1	
Impact (west)	West FCC Stream 1 (lower)	41° 15.446'S, 173° 5.839'E	0-2 cm	1		1		1
Impact (west)	West FCC Stream 2 (middle)	41° 15.433'S, 173° 5.863'E	0-2 cm	1		1		1
Impact (west)	West FCC Stream 1 (upper)	41° 15.425'S, 173° 5.877'E	0-2 cm	1		1		
Impact (east)	JME 088	41° 15.418'S, 173° 6.089'E	0-2 cm & 10-20 cm	1	1	1	1	1
Impact (east)	JME 087	41° 15.421'S, 173° 6.093'E	0-2 cm & 10-20 cm	1	1	1	1	
Impact (east)	JME 086	41° 15.423'S, 173° 6.097'E	0-2 cm & 10-20 cm	1	1	1	1	
Impact (east)	East FCC New 1 (north)	41° 15.408'S, 173° 6.098'E	0-2 cm & 10-20 cm	1	1	1	1	1
Impact (east)	East FCC New 2 (south)	41° 15.428'S, 173° 6.083'E	0-2 cm & 10-20 cm	1	1	1	1	
Impact (east)	JME 090	41° 15.436'S, 173° 6.079'E	0-2 cm & 10-20 cm	1	1	1	1	1
East control	Hunter-Brown	41° 16.187'S, 173° 6.497'E	0-2 cm & 10-20 cm	1	1	1	1	1
TOTAL SAMPLES				18	15	18	15	10

Table 1. Sediment contaminant and environmental variable monitoring sites located at East and West (FCC) impact and control sites.

Figure 1. Location of sediment contaminant sites at West FCC location. Insert is West control site (1st bay to the west of West FCC).

Figure 2. Location of sediment contaminant sites at East FCC location. Insert is East control site at Hunter-Brown Reserve.

Figure 3. Location of invertebrate contaminant samples collected from West FCC site and West control site.

Figure 4. Location of invertebrate contaminant samples collected from East FCC site. Yellow area indicates the composite *Amphibola* collection area. Insert map is East control cockle sample site located at Hunter-Brown Reserve.

Туре	Site number	Coordinates	Samples per site
West control	JME 080 (<i>Amphibola</i>)	41° 15.482'S, 173° 5.540'E	1
West FCC	JME 084 (<i>Amphibola</i>)	41° 15.484'S, 173° 5.859'E	1
East FCC (soft)	East FCC New 2 (south soft) (Diloma)	41° 15.438'S, 173° 6.076'E	1
East FCC (rocky)	East FCC New 2 (south rocky) (Diloma)	41° 15.438'S, 173° 6.076'E	1
East FCC (composite)	East FCC (Amphibola)	Whole area	1
East FCC (JME 090)	East FCC (cockle)	41° 15.436'S, 173° 6.079'E	1
East control	Hunter-Brown (cockle)	41° 16.190'S, 173° 6.497'E	1
TOTAL SAMPLES			7

Table 2. Invertebrate contaminant sample sites located at impact (FCC) and control sites.

5.2 Environmental variable sampling

Total organic carbon (TOC), particle size analysis and redox data were collected from impact and control sites on the 20th October and 10th November 2009 (Table 1, Figures 1 and 2). Apart from deep stream sites, total organic carbon samples were collected from shallow and deep strata at all sites sampled for sediment contamination, while sediment for particle analysis was collected from approximately 50% of all samples (Table 1). When collected, particle analyses were performed on a combination of both surface and deep samples. Sediment was collected using the sample methods used during the collection of sediment contaminant samples.

At each contaminant sample site (n = 18), a 15 cm deep by 13 wide core sample was collected to assess the redox layer. Each core was photographed and notes taken on colour and odour.

5.3 Biological community sampling

A variety of biological sampling was conducted at FCC and control sites in Spring 2009.

5.3.1 Macroalgae cover

On one occasion at two control sites (3 September) and on three occasions at impact sites (3 and 16 September, 10 November 2009), photographs of macroalgae cover were collected. At each site, a reference point that could be easily relocated was chosen. At the West FCC site, a total of three fixed point locations were selected, while two fixed points were chosen at the East FCC site (Table 3, Figure 5). On each occasion, a series of photographs were collected spanning the adjacent estuarine area. Photographs were rendered into a panoramic photograph using Autostitch. It is noted that this process may result in a small level of distortion and image-bending.

On 16^{th} September 2009, the percentage cover of macroalgae over the substratum were estimated from a series of contiguous $1m^2$ quadrats deployed perpendicular to the shoreline from fixed points (Table 4, Figure 6). The start of each series of quadrats was positioned near or at mean high water or at the foot of the rock embankments. The series of quadrats extended 10 m to 14 m distance from the point of origin. A photograph of representative quadrats was collected from each series of quadrats at each site.

5.3.2 Epifauna and infauna invertebrate density and size

Macroinvertebrates were sampled from four impact and two control sites on 16th September 2009 (Table 5, Figure 7). At each site, surface counts of conspicuous macroinvertebrates were collected from 14 replicate, haphazardly deployed 1m² quadrats. Only macroinvertebrates that were living on the surface or partially visible from the surface were counted.

Three replicate core samples (13 cm wide by 15 cm deep) were collected at each site (Table 5). Cores were processed on-site through a 1 mm mesh size sieve and the contents preserved in 70% isopropyl alcohol (IPA) for later sorting and identification. Macroinvertebrates were identified to the most practical taxonomic level by Rod Asher of the Cawthron Institute. All cockles obtained from core samples were measured for maximum length. To increase the sample size, additional cockles were collected and a representative sub-sample was also measured.

Table 3. Macroalgae photo-points at Mapua FCC impact and control sites.

Location	Site	Description	Coordinates
West control	North	Located at seaward edge of rushes	41° 15.487'S, 173° 5.544'E
West FCC	Western	At imbedded marble rocks at foot of bank	41° 15.458'S, 173° 5.825'E
West FCC	Middle	At imbedded marble rocks at foot of bank	41° 15.461'S, 173° 5.859'E
West FCC	Eastern	At imbedded marble rocks at foot of bank	41° 15.463'S, 173° 5.897'E
East FCC	Drain	On top of storm water pipe	41° 15.408'S, 173° 6.095'E
East FCC	South	At southern end of shoreline rock wall	41° 15.442'S, 173° 6.072'E
East control		12 m seaward of large tree lucerne	41° 16.187'S, 173° 6.492'E

 Table 4. Macroalgae transects at Mapua FCC impact and control sites.

Location	Site	Description	Coordinates	Quadrats in series
West control	North	Transect located north side of rushes, start at rush edge	41° 15.487'S, 173° 5.544'E	10
West control	South	Transect located south side of rushes, start at rush edge	41° 15.494'S, 173° 5.545'E	10
West FCC	West	Start on imbedded marble rock	41° 15.461'S, 173° 5.859'E	13
West FCC	East	Start on imbedded marble rock	41° 15.461'S, 173° 5.884'E	14
East FCC	North	16 m south of storm water pipe	41° 15.414'S, 173° 6.093'E	13
East FCC	South	16 m north from end of shoreline rock wall	41° 15.430'S, 173° 6.081'E	13
East control	West	12 m seaward of large tree lucerne	41° 16.187'S, 173° 6.492'E	13
East control	East	12 m seaward of large tree lucerne	41° 16.189'S, 173° 6.496'E	13
TOTAL QUADRATS				99

Table 5. Invertebrate infaunal and epifaunal sites from FCC impact and control sites.

Location	Site	Core replicates	Surface m ² replicates	Coordinates
West control	JME 080	3	14	41° 15.482'S, 173° 5.540'E
West FCC	West FCC (new2)	3	14	41° 15.473'S, 173° 5.867'E
West FCC	West FCC (new3)	3	14	41° 15.480'S, 173° 5.879'E
East FCC	East FCC (new1)	3	14	41° 15.408'S, 173° 6.098'E
East FCC	East FCC (new 2)	3	14	41° 15.428'S, 173° 6.083'E
Huunter-Brown	East Control	3	14	41° 16.187'S, 173° 6.497'E

Figure 5. Location of macroalgae photo points. Insert is East control (Hunter Brown Reserve).

Figure 7. Location of invertebrate infaunal and epifaunal sites at impact and control sites.

6.0 Results

6.1 Mollusc and sediment contaminant sampling

Contaminants in estuary and stream sediment varied with depth, both between and at the same sites, as well as at the same depth between sites (Figure 8, Table 6, Appendix 6). ADL (aldrin, dieldrin, lindane) exceeded the Soil Acceptance Criteria (SAC) at seven of 16 shallow impact sites and four of 13 deep impact sites. No elevated ADL values were recorded from control sites at either depth strata. The highest ADL value was recorded from JME 090 located close to the rock wall at the southern end of the East FCC site (Figures 2 and 8). The second highest ADL value was recorded from East FCC new2 (south), also located in the southern half of the East FCC shore close to the rock wall (Figures 2 and 8). All three shallow sediment sites sampled from the West FCC stream recorded values between 0.6 and 0.8 mg/kg dry weight. Deep stream sediments were not sampled during the present study. At seven impact sites, ADL was recorded below the SAC at both shallow and deep substrata. At another four sites, either the deep or the shallow sample was recorded below the SAC (Figure 8). DDX (2,4 DDT; 4,4 DDT; 2,4 DDD; 4,4 DDD; 2,4 DDE; 4,4 DDE) was recorded above the SAC from a deep sample collected from the West Control site (0.09 mg/kg; Table 6, Figure 8). DDX exceeded the SAC at all 16 shallow impact sites and 10 of the 13 impact deep sample sites (Table 6, Figure 8). The sites that were below the SAC were all located at the West FCC location (Figure 1). The highest DDX values were recorded from Stream (upper), JME 090 (East FCC), East FCC new2 (south) and Stream (lower) sites (Figure 8).

Comparison of DDX, dieldrin and aldrin levels sampled from the same sites on five occasions between 2005 and 2009 revealed high levels at particular sites in 2005 and 2008. Samples collected in 2008 and 2009 showed dramatically lower values (Figures 9 and 10, Table 7). Highest mean values for the sites sampled on all occasions between 2005 and 2009 showed peaks for DDX and dieldrin in 2005 and highest lindane levels in 2007 (Figure 10). In the three sample events between 2008 and 2009, values for DDX, dieldrin and lindane were dramatically lower than values recorded in 2005 and 2007. Despite this large decline, mean values for DDX (0.3984 mg/kg) and dieldrin (0.03986 mg/kg) remained above the SAC for the entire period including the two 2009 samples. The mean concentration of lindane, however, was below the SAC in 2008, 2009a and 2009b. Aldrin, the third component of ADL, has not been reported in figures as concentrations were typically below laboratory detection limits. A sample collected in January 2010 at one West FCC site (JMB 084) after the present study, produced slightly higher values for DDX (0.49 mg/kg) and dieldrin (0.014 mg/kg) (Easton 2010, Table 7).

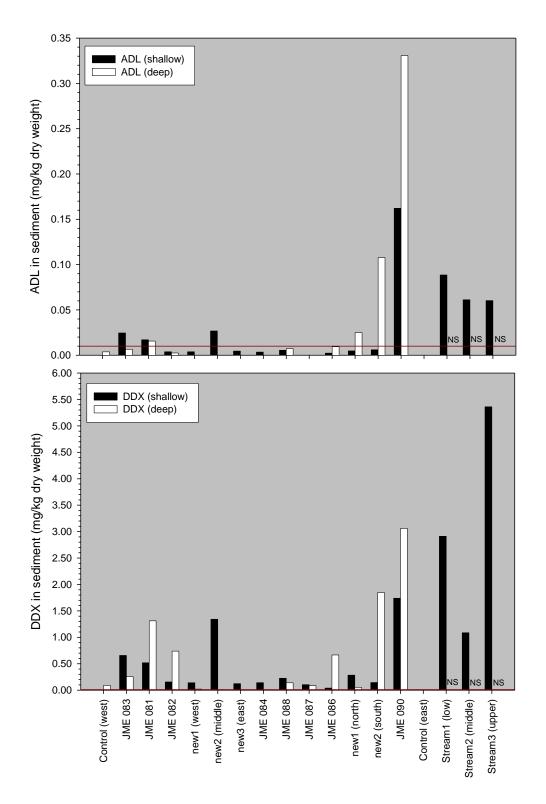


Figure 8. Levels of ADL (aldrin, dieldrin, lindane) and DDX (2,4DDT; 4,4DDT; 2,4DDD; 4,4DDD; 2,4DDE; 4,4DDE) (mg/kg dry weight) recorded from sediment samples collected at control and impact sites. NS = not sampled. Red line = SAC.

Table 6. Summary of ADL and DDX levels and their component analytes sampled in 2009 from impact (FCC sites) and control sites.

SURFACE (0 - 2 cm)	SAC	West	West FCC	West FCC	West FCC	West FCC	West FCC	West FCC	West FCC	East FCC	East FCC	East FCC	East FCC	East FCC	East FCC		West FCC	West FCC	West FCC
Test		Control	JME 083	JME 081	JME 082	new1 (west)	new2 (middle)	new3 (east)	JME 084	JME 088	JME 087	JME 086	new1 (north)	new2 (south)	JME 090	Control	Stream1 (low)	Stream2 (middle)	Stream3 (upper)
Aldrin		0.0010	0.0014	0.001	0.0010	. 0.00000	0.0011	. 0.00000	. 0.00000	0.0011	. 0.00000	0.0010	0.0010		0.0040	. 0.00000	0.0000	0.0047	0.0075
		< 0.0010	< 0.0011	0.001	< 0.0010	< 0.00099	< 0.0011	< 0.00099	< 0.00099	< 0.0011	< 0.00098	< 0.0010	< 0.0010	< 0.00099	0.0016	< 0.00099	0.0088	0.0047	0.0075
Dieldrin		< 0.0010	0.023	0.015	0.0028	0.0027	0.024	0.0036	0.0025	0.0044	< 0.00098		0.0038	0.005	0.16	< 0.00099	0.076	0.054	0.05
gamma-BHC (Lindane)		< 0.0010	0.001	0.001	< 0.0010	< 0.00099	0.0022	< 0.00099	< 0.00099	< 0.0011	< 0.00098	< 0.0010	< 0.0010	< 0.00099	< 0.0010	< 0.00099	0.0038	0.0025	0.0028
2.4-DDD		< 0.0010	0.084	0.065	0.018	0.014	0.19	0.014	0.014	0.014	0.0038	0.0031	0.014	0.0073	0.39	< 0.00099	0.34	0.19	0.36
4,4 DDD		< 0.0010	0.2	0.16	0.046	0.033	0.53	0.031	0.051	0.033	0.015	0.014	0.038	0.025	1	< 0.00099	0.93	0.3	1.1
2,4 DDE		< 0.0010	0.038	0.027	0.0062	0.0039	0.041	0.006	0.0038	0.0021	< 0.00098	< 0.0010	< 0.0010	< 0.00099	< 0.0010	< 0.00099	0.2	0.11	0.18
4,4 DDE		< 0.0010	0.21	0.16	0.039	0.057	0.48	0.047	0.054	0.037	0.011	0.0068	0.038	0.018	0.11	< 0.00099	1.2	0.32	1.2
2,4 DDT		< 0.0010	0.025	0.091	0.0073	0.002	0.008	0.0032	0.0028	0.019	0.015	0.0018	0.034	0.01	0.029	< 0.00099	0.041	0.027	0.12
4,4 DDT		0.0014	0.1	0.015	0.04	0.031	0.094	0.023	0.016	0.12	0.059	0.014	0.16	0.084	0.21	< 0.00099	0.2	0.14	2.4
ADL (aldrin, dieldrin, lindane) ¹	0.01	ND	0.02455	0.017	0.0038	0.00369	0.02675	0.00459	0.00349	0.0055	ND	0.0023	0.0048	0.00599	0.1621	ND	0.0886	0.0612	0.0603
DDX '	0.01	0.0039	0.657	0.518	0.1565	0.1409	1.343	0.1242	0.1416	0.2251	0.10429	0.0402	0.2843	0.1448	1.7395	ND	2.911	1.087	5.36

DEEP (15 - 20 cm)	SAC	West	West FCC	West FCC	West FCC	West FCC	West FCC	West FCC	West FCC	East FCC	East FCC	East FCC	East FCC	East FCC	East FCC	East
Test		Control	JME 083	JME 081	JME 082	new1 (west)	new2 (middle)	new3 (east)	JME 084	JME 088	JME 087	JME 086	new1 (north)	new2 (south)	JME 090	Control
Aldrin		< 0.00098	< 0.0011	0.0025	< 0.00099	< 0.0011	< 0.0010	< 0.00099	< 0.00099		< 0.0010	< 0.0010	< 0.0010	0.0072	0.028	< 0.0010
Dieldrin		0.0027	0.0055	0.011	0.0015	< 0.0011	< 0.0010	< 0.00099	< 0.00099	0.0063	< 0.0010	0.0083	0.024	0.1	0.3	< 0.0010
gamma-BHC (Lindane)		< 0.00098	< 0.0011	0.0021	< 0.00099	< 0.0011	< 0.0010	< 0.00099	< 0.00099	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.0026	< 0.0010
2,4-DDD		< 0.00098	0.022	0.081	0.044	< 0.0011	0.0012	< 0.00099	< 0.00099	0.0049	0.0028	0.016	0.0035	0.086	0.47	< 0.0010
4,4 DDD		0.0071	0.054	0.15	0.15	0.012	0.0025	< 0.00099	0.0021	0.0062	0.0036	0.035	0.0069	0.11	1.2	0.0026
2,4 DDE		0.024	0.0075	0.031	0.013	< 0.0011	< 0.0010	< 0.00099	< 0.00099	0.0044	0.0011	0.0046	< 0.0010	< 0.0010	< 0.0010	< 0.0010
4,4 DDE		0.001	0.046	0.18	0.11	0.0026	0.0029	0.0013	0.0036	0.031	0.013	0.2	0.014	0.31	0.37	0.0011
2,4 DDT		0.056	0.017	0.15	0.022	< 0.0011	< 0.0010	< 0.00099	< 0.00099	0.014	0.011	0.091	0.004	0.35	0.17	< 0.0010
4,4 DDT		0.0015	0.11	0.72	0.4	0.0035	0.0014	< 0.00099	0.001	0.078	0.053	0.32	0.024	0.99	0.85	0.002
ADL (aldrin, dieldrin, lindane) ¹	0.01	0.00368	0.0066	0.0156	0.00249	ND	ND	ND	ND	0.0073	ND	0.0093	0.025	0.1077	0.3306	ND
DDX ¹	0.01	0.09009	0.2565	1.312	0.739	0.01975	0.00855	0.003775	0.008185	0.1385	0.0845	0.6666	0.0529	1.8465	3.0605	0.0072

Notes:	
1	For multiple analyte totals, the concentration detected below the LOR is assumed to have a concentration of 0.5 the LOR
SAC	Soil acceptance criteria
LOR	Limit of laboratory reporting
ND	Not detected above LOR's
	Value exceeds Soil Acceptance Criteria (SAC)

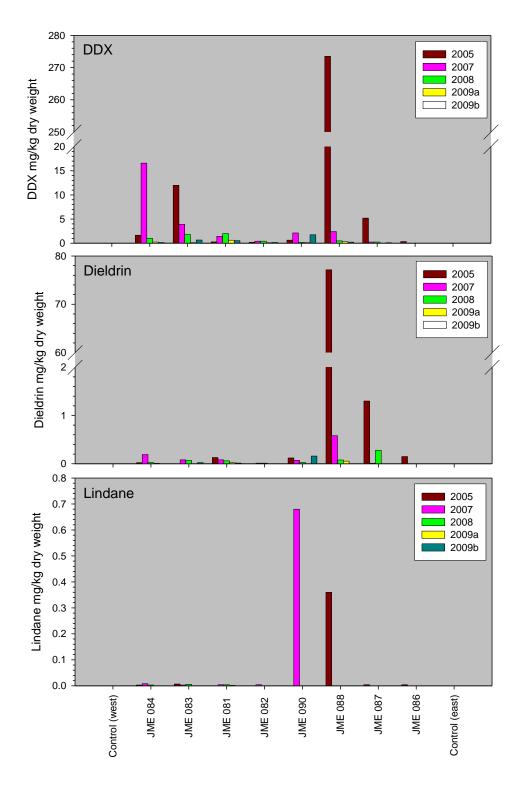


Figure 9. Levels of DDX (2,4DDT; 4,4DDT; 2,4DDD; 4,4DDD; 2,4DDE; 4,4DDE), dieldrin and lindane (mg/kg dry weight) recorded from the same control and impact sites in 2005, 2007, 2008, 2009a and 2009b (present study).

Table 7. Summary of DDX, dieldrin and lindane levels from surface samples collected between 2005 and October 2009 from impact (FCC) and control sites. Only sites common to all studies have been included.

Location	Area			DDX (m	ng/kg)				[Dieldrin	(mg/kg))		Lindane (mg/kg)			
		2005	2007	2008	2009a	2009b	2010	2005	2007	2008	2009a	2009b	2010	2005	2007	2008	2009a
Control	West (1 bay west of FCC)	0.0056	ND	ND	0.005	0.0039		-	ND	ND	ND	ND		-	ND	ND	ND
JME 084 (West FCC snail sample site) 10m (2005, 2007), 40 m (2008), 45m (2009) from MHWS	West FCC	1.64	16.6	0.987	0.23	0.1416	0.49	0.022	0.19	0.025	0.009	0.0025	0.014	0.003	0.008	0.003	ND
JME 083 (at concrete bridge)	West FCC	12	3.9	1.8	0.129	0.657		0.0018	0.08	0.067	0.005	0.023		0.007	0.003	0.0057	ND
JME 081 (40 m down ditch)	West FCC	0.26	1.43	2	0.62	0.518		0.129	0.08	0.06	0.02	0.015		-	0.004	0.0039	0.0016
JME 082 (80 m down ditch)	West FCC	0.17	0.42	0.41	0.12	0.1565		0.0035	0.013	0.013	0.004	0.0028		0.0005	0.004	ND	ND
JME 090	East FCC	0.63	2.12	0.187	0.13	1.7395		0.12	0.071	0.026	0.006	0.16		-	0.68	ND	ND
JME 088 (top of beach)	East FCC	273.5	2.4	0.477	0.3	0.2251		77.13	0.58	0.078	0.054	0.0044		0.36	ND	ND	ND
JME 087 (10 m down beach) ¹	East FCC	5.2	0.24	0.24	0.016	0.1043		1.3	0.0108	0.28	0.005	ND		0.004	ND	ND	ND
JME 086 (15 m down beach) ²	East FCC	0.34	0.023	0.044	0.013	0.0402		0.15	0.0057	0.004	ND	0.0013		0.004	ND	ND	ND
Control	East (Hunter-Brown)	-	-	-	-	ND		-	-	-	-	ND		-	-	-	-
Notes:																	
1	10m (2005, 2009b), 5m (20	07), 4.8r	n (2008), 8m (2	009a)												
2	22m (2005), 15m (2007, 20		•		,												
Source for data before October 2009	Easton (2009)																
Source after October 2010	Easton (2010)																
2009b	Present report																
	Values greater than Soil A	cceptanc	e Criter	a (SAC)												

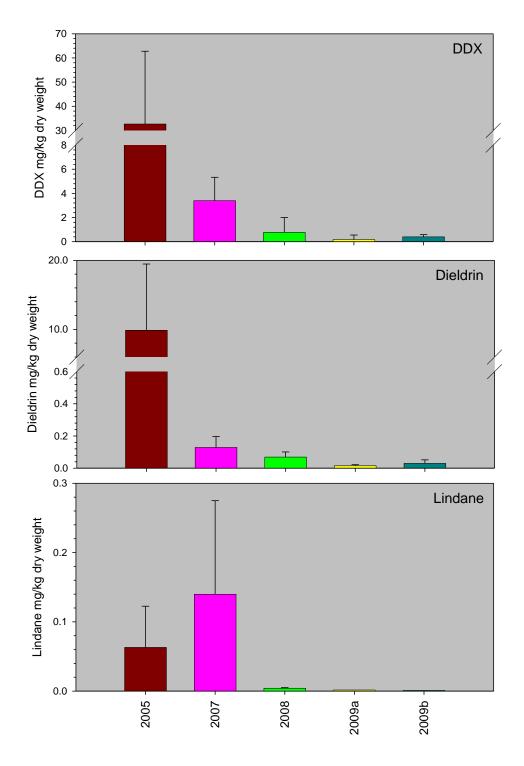


Figure 10. Mean DDX (2,4DDT; 4,4DDT; 2,4DDD; 4,4DDD; 2,4DDE; 4,4DDE), aldrin and lindane (mg/kg dry weight) recorded from the same control and impact sites sampled in 2005, 2007, 2008, 2009a and 2009b. Note: x axis values are variable between and within graphs. Error bars +/- 1 se.

A variety of molluscs were tested for pesticide contamination from five impact and two control samples (Table 8). Levels of ADL in cockles sampled at the East FCC impact site were relatively low (0.0033 mg/kg). DDX levels for this cockle sample was three times higher than the control site, but was dramatically lower than the value recorded for mudflat snail (Table 8). Mudflat snail ADL and DDX concentrations from the West FCC site (JME 084) were the highest values recorded in the present study with DDX values being the second highest since 2005 (i.e. 22.09 mg/kg compared to 51.14 mg/kg in 2007) (Table 9). This represented a six fold increase between the February 2009 sample and the October 2009 sample. Dieldrin also showed an increase over the same nine month period, however, lindane was not detectable. A sample collected by TDC in January 2010 confirmed higher values for snails at JMB 084 comapred to early 2009, however, values for both DDX and dieldrin were lower than the values recorded during the present study (Table 9).

Mudflat snails had not been sampled at the East FCC site since 2005 (Easton 2005). DDX and dieldrin levels both declined over this period, with DDX levels showing a 3.5 fold decline between sample occasions (Table 9).

Topshells (*Diloma*) were sampled from rock and soft substrata during the present study based on a recommendation by Davidson (2009). Slightly higher values of DDX were recorded from topshells living on soft substrata; however, higher levels of ADL were recorded from hard substrata topshells (Table 8). ADL and DDX levels for topshells were lower than levels recorded for mudflat snails at the East FCC beach. DDX levels in topshells at the East FCC beach exhibited a 5.8 fold increase between February 2009 (0.025 mg/kg) and October 2009 (0.1465 mg/kg), but concentrations were well below peaks recorded in 2007 (0.543 mg/kg) (Table 9).

Location Site Species Substrata	Control	JME 084	East FCC Composite Amphibola Soft	East FCC new2 (north) Diloma Rocky	East FCC new2 (south) Diloma Soft	East FCC JME 090 Cockle Soft	East Control Cockle Soft
Pesticides (mg/kg)							
Aldrin	< 0.00050	< 0.0015	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050
Dieldrin	0.002	0.52	0.23	0.031	0.027	0.0028	< 0.00050
gamma-BHC (Lindane)	< 0.00050	< 0.0015	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050
2,4-DDD	< 0.00050	1.8	0.12	0.0095	0.013	0.0012	< 0.00050
4,4 DDD	0.015	5.9	0.46	0.067	0.082	0.0044	0.00069
2,4 DDE	< 0.00050	0.18	0.0069	0.0019	0.0036	< 0.00050	< 0.00050
4,4 DDE	0.068	11	0.013	0.058	0.08	0.0041	0.0011
2,4 DDT	< 0.00050	0.11	0.31	0.0011	0.0017	< 0.00050	< 0.00050
4,4 DDT	0.012	3.1	0.23	0.009	0.0088	0.00081	< 0.00050
ADL (aldrin, dieldrin, lindane) ¹	0.0025	0.5215	0.2305	0.0315	0.0275	0.0033	ND
DDX ¹	0.09575	22.09	1.1399	0.1465	0.1891	0.01101	0.00279

Notes:

1 ND For multiple analyte totals, if below the LOR it is assumed to have a concentration of 0.5 the LOR Not detected above LOR's

Scale All values presented as mg/kg

LOR Limit of laboratory reporting

Table 9. Historical pesticide concentrations in molluscs recorded from impact and control sites sampled between 2002 and 2010.

Site	Location	Species	Substrata	DDX (mg/kg)						Dieldrin (mg/kg)						Lindane (mg/kg)				
				2005	2007	2008	2009a	2009b	2010	2005	2007	2008	2009a	2009b	2010	2005	2007	2008	2009a	2009b
Control	West	Amphibola	Soft	0.11	-	-	-	0.09575		0.007	-	-	-	0.002		-	-	-	-	ND
JME 084	West FCC	Amphibola	Soft	6.2	51.14	10.34	3.5	22.09	13 ²	0.364	2.18	0.48	0.22	0.52	0.39 ²	-	-	-	-	ND
Composite	East FCC	Amphibola	Soft	3.96	-	-	-	1.1399		1	-	-	-	0.23		-	-	-	-	ND
New2 (north)	East FCC	Diloma	Rocky	-	0.543	0.078	0.025	0.1465		-	0.027	0.01	0.005	0.0031		-	0.001	ND	ND	ND
New2 (south)	East FCC	Diloma	Soft	-	-	-	-	0.1891		-	-	-	-	0.0027		-	-	-	-	ND
JME 090	East FCC	Cockle	Soft	-	-	-	-	0.01101		-	-	-	-	0.0028		-	-	-	-	ND
Control	East	Cockle	Soft	< 0.01 ¹	-	-	-	0.00279		-	-	-	-	ND		-	-	-	-	ND

Note:

1

O'Halloran and Cavanagh (2002)

- No data supplied

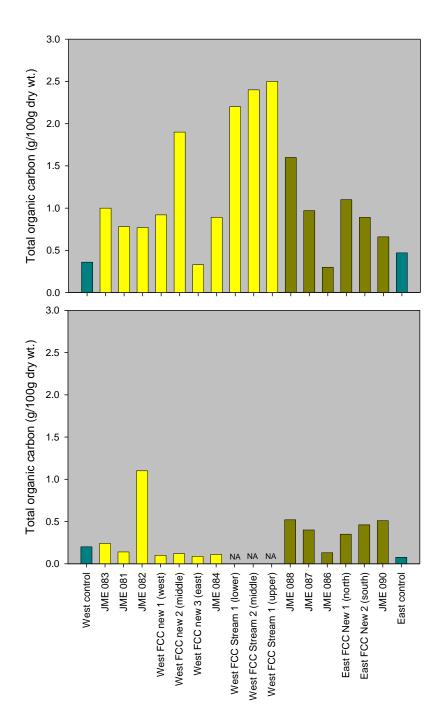
2 Easton (2010)

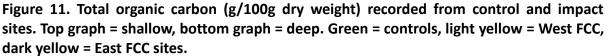
6.2 Environmental variable sampling

6.2.1 Total organic carbon

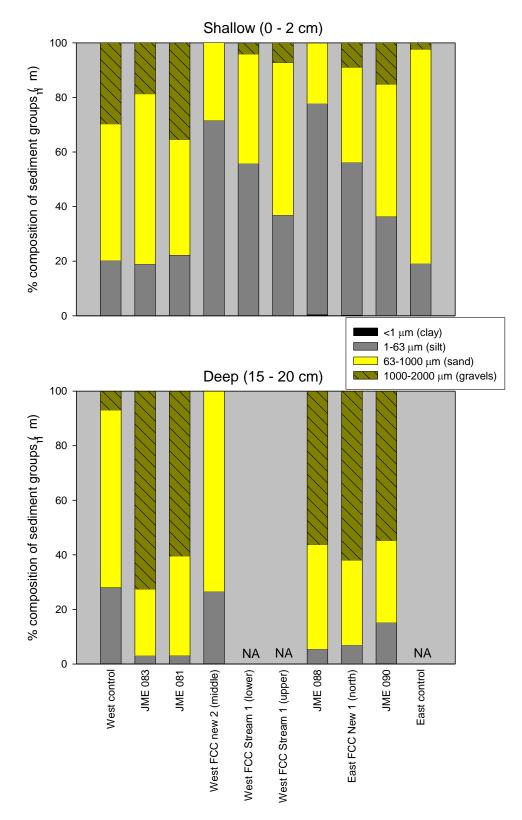
For each impact and control site, total organic carbon (TOC) values were higher from surface sediments compared to sediments sampled from 15-20 cm depth (Figure 11, Appendix 6). Apart from the deep sample collected from JME 082, all TOC values in the West FCC estuary were below or very close to the control value (Figure 11). At East FCC sites, values from deep sediments were mostly higher than the control value, but dramatically lower than surface sediment values at the same sites.

TOC values for most impact surface sediments were elevated compared to control values (Figure 11). The exceptions were sites West FCC (new3), located at the east end of the shore, and East FCC (JME 086), being the most distant sites to the FCC site and were close to the low water mark. The highest value from an estuary site was recorded from West FCC (new2) located approximately 25 m from the FCC edge and situated centrally along the site. Samples collected from the stream showed the highest values of all being > 2 g/100g dry weight (Figure 11).


6.2.2 Particle size


Of the total samples collected (10 shallow, 7 deep), percent volume of particles >2000 µm ranged from 0 to 72.6% (see Appendix 7). In general, deep samples supported the highest percentage of very coarse material. Field observations suggested that the surface layer at all sites was characterised by relatively fine material with deeper sediment often, but not always, dominated by pebble substrata (4-64mm). Most deep samples collected from the East FCC site had a relatively high proportion of this coarse material as the substrata used to replace substrata during remediation was very coarse.

For the purpose of analysing the finer sediment particles, this coarse material was excluded from the following calculations. The size of particles < 2000 μ m (i.e. gravel size and below) varied with depth and between sites (Figure 12). In general, particle size < 2000 μ m was dominated by a greater proportion of coarse material (i.e. 1000-2000 μ m) at the deep strata (10-20 cm) compared to shallow strata (0-2 cm) where silt substrata represented a dramatically greater proportion (Appendix 8). Five of the seven deep sites supported > 50% gravel substrata compared to all of the shallow samples being < 35% gravel (Figure 12). Fine particles between 1-63 μ m (silt) represented < 30% composition at only six of the ten shallow sites, whereas at deep sites, all sites had composition < 30% silt. Sand (63-1000 μ m)



was represented by similar proportions at both shallow and deep samples with the mean for all sites being 46% for shallow sites and 42% for deep sites.

Figure 12. Particle size composition (μ m) recorded from control and impact sites.

6.2.3 Redox

One redox core sample was collected from each of the sediment contaminant sampling sites (Table 1, Figures 1 and 2). Photographs of all cores have been included in Appendix 5. One core sample was collected from each of the two control sites (i.e. West and East controls). The West Control site showed no sign of any redox layer (i.e. distinct black colouration or layer), while the East Control site showed a mild discolouration, but no defined redox or anaerobic layer (Photo 1). No anaerobic smell was detected from either sample.

Photo 1. Core samples collected from West Control site (left) and East control site (Hunter-Brown)(right) on 20 October 2009.

A total of seven redox core samples were collected from the West FCC impact shore (one per site; Appendix 5). Site JME 081 sampled from mid-way down the estuarine stream channel showed little or no discolouration, while all other samples showed mild to moderate discolouration. Site JME 082 showed the strongest discolouration of any West FCC impact estuary sites (Photo 2). This site was the further-most site into the estuary on the edges of the stream channel (Figure 1). The core showed a relatively even discolouration from near the surface to the bottom of the core, however no strong smell was associated with the core indicating only a moderate level of enrichment.

Specialists in research, survey and monitoring

Photo 2. Core samples collected from West FCC (JME 082) (left) and West FCC (new3) (right) on 20 October 2009.

A total of six redox core samples were collected from the East FCC impact shore (one per site; Appendix 5). All cores apart from JME 090 located at the southern end of the beach showed little or no discolouration (Photo 3). JME 090 was located in an area of the shore where sediments were finer than the rest of sample sites located along this shore. The anaerobic layer was apparent very close to the surface and was represented by a strong black colour and a characteristic enriched odour (Photo 3).

Photo 3. Core samples collected from East FCC (JME 090) (left) and East FCC (new1) (right) on 20 October 2009.

One core was collected from each of three sample sites located in the West FCC stream channel (Appendix 5). Cores showed streaky discolouration with odour present (photo 4). All samples showed mild effects of nutrient enrichment. Core samples were characterised by small coarse material from the remediation (i.e. small cobbles, pebbles, gravels with fine substrata between; photo 4).

Photo 4. Core samples collected from Stream middle (left) and Stream upper (right) on 10 November 2009.

6.3 Biological community sampling

6.3.1 Macroalgae cover

Photographs collected from comparable tidal heights at impact and control sites showed more macroalgae at sites adjacent to FCC sites (Photo 5).

Photo 5. Panoramic photos (September 2009). From top: West control, West FCC middle, East FCC south, and East control (Hunter Brown).

Macroalgal cover was particularly apparent at the West FCC new2 (middle) where a green cover of mostly *Enteromorpha* sp. was observed (Photo 6).

Photo 6. *Enteromorpha* sp. recorded from the West FCC (new2 middle) site close to the edge of the embankment.

Mean percentage cover values recorded from the four impact and four control series of quadrats also showed greater cover of macroalgae at impacts sites compared to control sites (Figure 13, Appendix 1). The West FCC sites (east and middle) had the highest mean values (Figure 13), ranging from 1-98% cover for individual quadrats (Appendix 1). The East FCC site had the second highest values, ranging from 1-30 % cover. Values at the two control sites were low, with the highest individual quadrat value of 10% cover.

Specialists in research, survey and monitoring

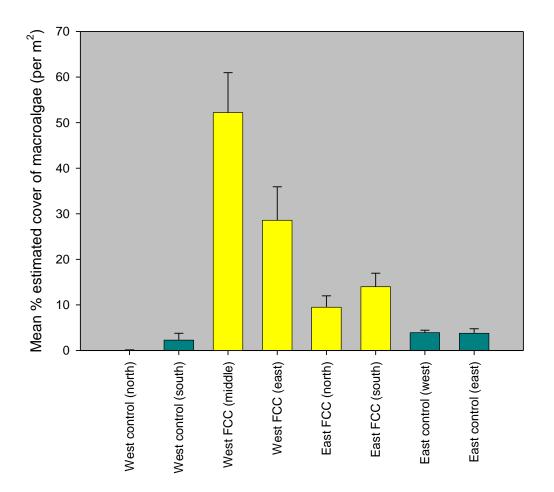
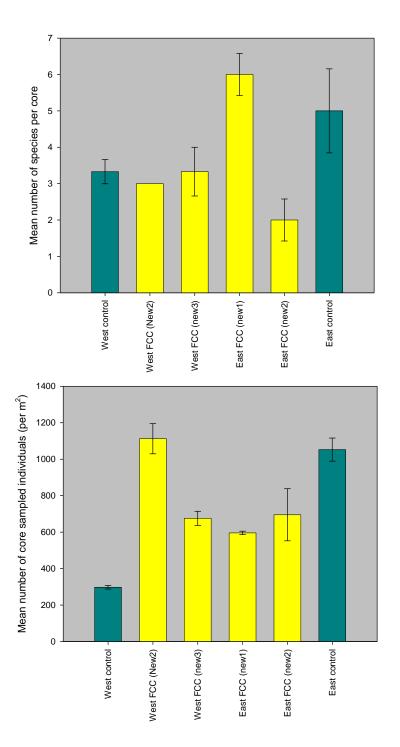
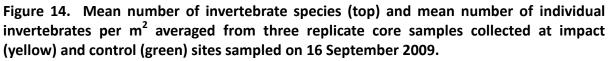


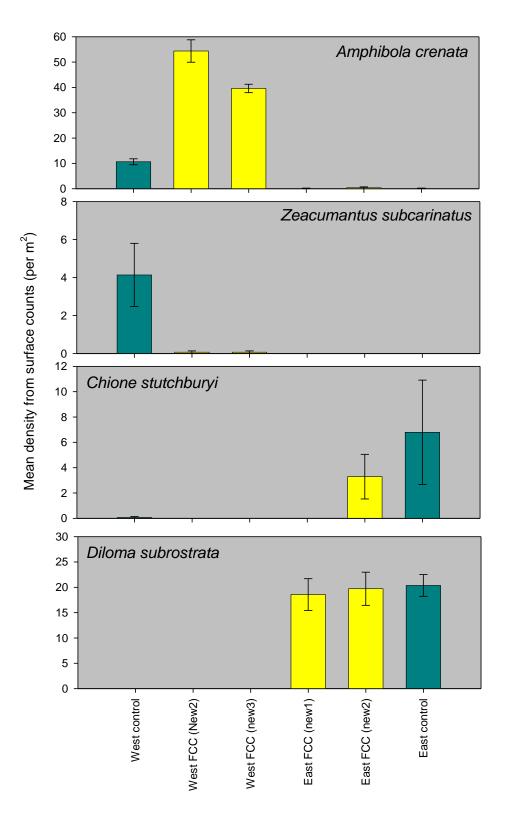
Figure 13. Mean percentage cover of macroalgae recorded from 14 contiguous 1m² quadrats deployed at each impact and control site. Error bars are +/- 1 standard error.


6.3.2 Epifauna and infauna invertebrate density and size


The mean number of macroinvertebrate species recorded from three replicate core samples collected at sites in September 2009 varied from 2 to 6 species (Figure 14, Appendix 2). Highest number of species from core samples occurred at one control site (East control) and one impact site (East FCC new1), while the lowest value was recorded from the second east impact site (East FCC new2). An intermediate but relatively consistent number of species were recorded from the western control and impact sites (3-3.3 species per site; Figure 14).

The mean number of individual macroinvertebrates recorded from impact and control sites also varied (Figure 14, Appendix 2). The highest values were recorded from one control site (East control) and one impact site (West FCC new2), while the lowest value was at the

second control site (West control). Intermediate and relatively consistent densities were recorded from the remaining impact sites (West FCC, East FCC (new1 and new2)).


The mean density and composition of macroinvertebrates recorded from surface counts at East and West sites exhibited distinct differences (Figure 15, Appendix 3). Eastern sites were dominated by cockle (*C. stutchburyi*) and topshell (*D. subrostrata*), while western sites were dominated by mudflat snail (*A. crenata*) and spire shell (*Zeacumantus subcarinatus*). Some species were present at both West and East FCC sites. These species were, however, more abundant at either East or West sites, but not both.

Densities of topshell remained relatively consistent between East impact and control sites, whereas densities of mudflat snail were higher from the West impact sites compared to the West control site (Figure 15, Appendix 3). The spire shell was more abundant the West control site compared to the two West impact sites and cockles were more abundant at the East control site, especially compared to the East FCC (new1) site.

The mean size of cockles collected from one impact and one control site was virtually identical (Figure 16, Appendix 4). Overall, cockles at both sites were relatively small, ranging in size from 3-29 mm at the control site and 2.5-32 mm at the East FCC impact site. A small number of cockles were recorded from West FCC infaunal core samples, but cockles were small, ranging from 3.5-13 mm.

The mean size of mudflat snails was comparable between the West control and the East FCC impact site (Figure 16, Appendix 4). The mean size of mudflat snails at impact site West FCC JME 084 was nearly half that of the West control and East FCC impact site. This result was reflected in the size ranges, with the West impact site supporting a smaller range of individuals down to 6 mm compared to the smallest size at the other two sites being 14-15 mm (Appendix 4).

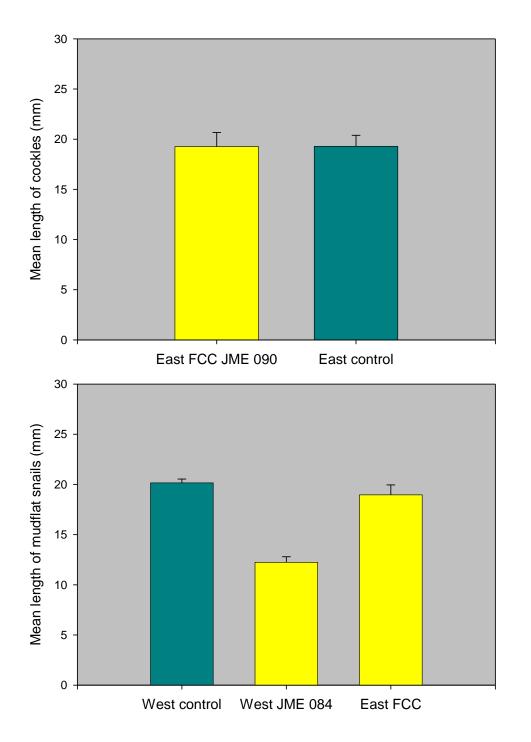


Figure 16. Mean size of cockles (top) and mudflat snails (bottom) from impact (yellow) and control (green) sites sampled on 16 September 2009.

7.0 Discussion

7.1 Organism and sediment contaminant sampling

DDX and ADL concentration in sediment varied depending on location. At West FCC sites, highest concentrations were recorded in or near the stream channel that crosses the estuary and within the stream proper. A site located centrally on the West FCC shore (FCC West new2 middle) also shower higher contaminant levels than sites located in areas away from channels or standing water. West FCC new1 (west), West FCC new3 (east) and West FCC JME 084 all had relatively low concentrations of ADL and DDX. At these sites, the Soil Acceptance Criteria (SAC) for ADL was achieved and DDX levels were at their lowest for any impact site in the present study.

CH2M Hill (2007) sampled sediment OCP's from three sites along the stream. Authors reported the SAC was exceeded at all sites and reported highest concentrations of DDX and ADL near the mouth of the stream where it entered the estuary (DDX 3.296 mg/kg, ADL 0.105 mg/kg). In the present study, stream samples also exceeded the SAC, however, highest OCP values were recorded from the upper stream site (DDX 5.36 mg/kg, ADL 0.0603 mg/kg), with the downstream site having comparable levels to the CH2M Hill (2007) study (DDX 2.9 mg/kg, ADL 0.0886 mg/kg). The reason for the higher DDX value recorded at the upstream site in the present study compared with the 2007 sample may be related to the presence of a contaminant "hotspot" buried close to the stream edge (see Audit section 6.7.3.2).

The elevated OCP levels in the West FCC stream were noted by the auditor and their presence have been confirmed during the present study. The auditor stated that these "hotspots" could be remediated, however, he stated that this was not warranted as they presented no particular risk as creek-bed gravel and vegetative cover prevents sediment mobilisation and hence the pathway to potential receptors. The auditor recommended that the Site Management Plan ensure measures be established to control excavation in the area and to prevent the creek from being eroded.

At the East FCC shore, highest sediment concentrations of ADL and the second highest values for DDX were recorded. Unlike West FCC sites where ADL levels were higher from the shallow strata, higher values at the East FCC sites were recorded from the deep strata. Higher ADL and DDX concentrations at East FCC were recorded from the southern half of the shore. The redox core at JME 090 also indicated the greatest effect from nutrient enrichment compared to northern East FCC cores and West FCC cores. This nutrient enrichment was presumably from nutrients introduced via water seepage from the FCC site.

Water seepage channels arising from the foot of the rock wall occur regularly along this shore and carry water from the FCC site across the mudflat towards the Mapua Channel.

Despite elevated ADL and DDX above the SAC recorded during the present study, levels were dramatically lower than values recorded historically from this area. For example, 2005 DDX levels at JME 088 (East FCC) were 273 mg/kg compared to October 2009 when values were 0.225 mg/kg. This represents a 1213 fold decrease following remediation of contaminated estuarine sediments. At JME 084, DDX in 2007 and 2008 was 16.6 and 10.34 mg/kg respectively compared to 0.1416 mg/kg in October 2009. Interestingly for JME 090, highest DDX values were recorded in the present study and in 2007 (2.12 and 1.73 mg/kg respectively).

In the 2009 Audit of the remediation, the auditor stated that the SAC for DDX and ADL in estuarine sediments was not met (Pattle Delamore 2009). The present study confirms that three of the 26 marine sediment samples adjacent to the FCC met the DDX SAC, while approximately 70% of ADL samples achieved the SAC. The auditor stated that re-deposition from adjacent non-complying sediment from the surrounding marine environment was one of the primary reasons for recontamination of remediated estuarine sediments. Sampling of West FCC site from offshore of the remediated beach (site JME 084) confirmed that the surface layer of this non-remediated substrata is contaminated with variable levels of OCP's (DDX 0.14-1.34 mg/kg, ADL 0.003-0.026 mg/kg). Sampling of these non-remediated sediments also confirmed that deeper material exhibited relatively low levels of contamination, often achieving the SAC.

The auditor also stated that there was evidence that re-contamination of deeper backfill material had occurred during remediation works and that this may have been due to runoff from the site during remediation works. CH2M Hill (2007) first raised the issue of runoff from the FCC land during remediation works and recommended a variety of measures to minimise recontamination of the estuary sediments. Based on DDX and ADL levels recorded from particular remediated sites sampled during the present study, it appears that some recontamination has occurred. For example, DDX and ADL increased in October 2009 compared to most previous results in the stream (3 sites), the East FCC site (JME 090) and for mudflat snails at West FCC (JME 084). An increase in OCP concentrations above estuary background concentrations recorded from offshore sediment samples suggests runoff of OCP's from FCC land has occurred. Possible mechanisms for this increase include (a) runoff during remediation works after the CH2M Hill (2007) data were collected, (b) variable OCP concentrations in sediment at sample sites resulting in variable results from sites, (c) groundwater seepage from the FCC site into the stream and low lying estuarine flats, and (d) recontamination from adjacent non-remediated marine sediments that have OPC's.

Comparison between the present sample and the next sample due in 2010 will help assess the source or sources of recontamination.

Of interest during the present study was a DDX result exceeding the SAC at the deep West Control site. This was unexpected and cannot be explained by cross contamination during sampling as this site was the first location sampled for OCP's. It is possible that the elevated DDX in deep sediments relates to the historical impact of the FCC site during its operation. It is possible that the FCC site resulted contamination over a large spatial scale in Waimea Inlet.

DDX and ADL concentrations in cockles at East FCC were elevated above the control values, but were comparable to higher values recorded from other studies located in estuaries close to large cities such as the Avon Heathcote (Thomson and Davies 1993) and Manukau Harbour (Hickey et al. 1995). At the East FCC shore, both cockles and topshells had lower levels of DDX and ADL compared to mudflat snails. This confirms the conclusion by O'Halloran and Cavanagh (2002) that mudflat snails represent the best candidate mollusc to monitor contaminants at Mapua. Of particular note in the present study was an increase in DDX and dieldrin in mudflat snails at the West FCC site between February 2009 and October 2009. DDX recorded on October 2009 (JME 084 at 22.09 mg/kg) represented the second highest value after 2007 (51.15 mg/kg) recorded during the five sample events, while the dieldrin value in the present study was the highest recorded (0.52 mg/kg). Snails at this site were very abundant, but were all small in size. As these are mostly juvenile snails, it is unlikely they have migrated into this area from elsewhere, therefore the OCP concentrations in the flesh will have been received from the surface layer of estuarine sediment. The reason for the increase in ADL and DDX between 2008, early 2009 and the present study is unknown as sediment levels were declining over the same period, achieving the SAC for both dieldrin and lindane.

7.2 Environmental variable sampling

7.2.1 Total organic carbon

Total organic carbon values (TOC) were highest from the surface layer of sediment compared to samples collected from 10-20 cm depth. TOC values from most impact sites were elevated well above control sites. These data suggest that enrichment of sediment is likely and the most probable source is soluble nutrients in the water seeping from the adjacent FCC site. The highest value for an estuarine site was recorded from a low lying area that received seepage from adjacent areas (West FCC new2 middle). TOC values from the surface sediments of the stream adjacent to the West FCC site were the highest recorded in the present study (> 2 g/100g dry weight). The catchment of the stream includes storm-

water including nutrients from urban properties. Presumably, seepage of nutrient-rich water from the West FCC site would also enter the stream. Flushing of the stream is limited and only occurs on large tides or during flood events.

7.2.2 Particle size

The East FCC sample sites were mostly located on remediated shores, whereas the West FCC sample sites were located in substrata offshore of remediated sediment. The sediment used to replace contaminated estuarine sediments during remediation was composed of gravels, pebbles and small cobbles. At East FCC, sample sites with coarse material were dominant below the immediate surface of the beach. It was not surprising therefore that sample sites in East FCC shore were dominated by substrata > 2 mm. For practical reasons, this coarse material was excluded from the analysis of fine substrata < 2 mm. As expected, and based on field observations, surface sediment contained a greater proportion of silt material than deeper substrata. Although present at shallow sites, coarse substrata in the sand and gravel size range represented a greater proportion at deeper sites.

No obvious pattern between particle size and contaminant levels was apparent. Some sites had higher levels of OCP's at the surface compared to deeper samples; however, some of the highest OCP values were recorded from deep compared to the surface samples.

7.3 Epifauna and infauna invertebrate density and size

Distinct differences between the environmental variables at western and eastern sites probably have considerable influence on species composition and abundance. It is probable that most of the biological differences between western and eastern sites were due to these environmental differences. Eastern impact and control sites are located on the edge of a channel swept by very strong and regular tidal currents, whereas western impact and control sites are located in sheltered embayments.

It is difficult to distinguish between the importance of environmental factors and the potential effect of pesticides on invertebrate density, presence/absence, and size (Liess and Carsten 2005). Each site has a unique set of environmental variables that largely determine species composition and abundance. In addition, estuarine environments are notoriously patchy, with relatively high variation being common place, even between sites situated in close proximity (Robertson *et al.* 2002). Further compounding this variability is the vulnerability of species to pesticides and a lack of information on the effects of pesticides on marine invertebrates.

Based on invertebrate data collected during the present study, sites exhibited both differences and similarities between impact and control locations. The number of species

recorded from one eastern impact site (East FCC new2) was well below the number recorded from the other eastern impact site (East FCC new1) and the eastern control site. The reason for this difference is difficult to establish, however, DDX values were higher at the East FCC (new2) compared to the other impact site located at the northern end of the shore. Whether this result is related to the heavily contaminated surge chamber that was removed from the southern end of the beach during remediation is unknown.

The number of species recorded at the west impact and control sites was comparable; however, the density of invertebrates was considerably higher at impact sites, especially West FCC (new2). This result was due to the high numbers of mudflat snail and estuarine snail (*Potamopyrgus estuarinus*) recorded from the impact sites compared to the control site. The high numbers of estuarine snails and small mudflat snails at western impact sites may be related to differences in habitat composition combined with relatively high total organic carbon values recorded from surface sediments. The enriched sediments at this impact site may support higher numbers of snails due to an enhanced food source compared to the control site where snail numbers were comparatively low.

Of interest was the topshell (*D. subrostrata*) at the two eastern impact sites and the associated control. At these sites, densities were almost identical. Similarly, the mean size of cockles recorded from eastern impact and control sites were almost identical. In contrast, sizes of mudflat snails varied between the West JME 084 site and the West control and East FCC sites. The West JME 084 site supported large numbers of small individuals compared to less common, larger animals found at the other two sites. JME 084 may represent an ideal habitat for juvenile settlement and growth, with individuals moving away as they reach a larger size. It is also possible that high densities may limit the size that individuals can grow due to overcrowding.

Overall, the composition, abundance and size of macroinvertebrates were distinctly different between east and west sites. Differences between impact and control sites were most likely due to enrichment of sediments and natural environmental variation between sites. Despite this environmental variability, some components of the invertebrate community were strikingly similar. The presence of contaminants and nutrient enrichment as indicated by TOC and redox results shows that sites adjacent to the FCC site are not natural when compared with the control sites, however, contaminant and enrichment was not at levels resulting in a mass reduction in the diversity, abundance and size of macroinvertebrates.

7.4 Macroalgae cover

Macroalgae blooms are traditionally indicative of nutrient enrichment. A localised macroalgae bloom was recorded from the West FCC site with relatively minor levels of macroalgae being recorded from the East FCC shore. The macroalgae present in the West FCC shore was dominated by *Enteromorpha* sp., a species usually associated with freshwater flows into a marine environment. This species therefore confirms the presence of freshwater seepage from the West FCC site into the estuary. The spatial scale and the quantity of macroalgae growth was best described as a localised bloom with a high percentage cover, but relatively low biomass of macroalgae when compared to some blooms in estuaries around New Zealand. In particular locations these blooms can become a nuisance as algae decomposes and smells. The relatively small spatial scale and low biomass suggest that nutrient enrichment is not excessive in this area. It is probable that the macroalgal bloom will be seasonal at the West FCC site, with biomass declining in the summer and winter months.

References

Cavanagh, J.E.; O'Halloran, K. 2003. Investigation of organochlorine contamination in mud snails (Amphibola sp.) and sediment collected from mudflats adjacent to the Fruit Chemical Company (FCC) site at Mapua – summary of results. Landcare Research Contract Report prepared for Tasman District Council.

CH2M HILL, 2007. Groundwater and sediment investigation report, former Fruitgrower Chemical Company site, Mapua. Report prepared for Ministry for the Environment.

Davidson, R.J. 2009. Review of snail sampling protocols for the east intertidal shore adjacent to the FCC remediation site, Mapua. Prepared by Davidson Environmental Ltd. for Tasman District Council and Ministry for the Environment. Survey and monitoring report no. 607.

Easton, J. 2005. Report on macroinvertebrate and sediment quality monitoring for FCC site remediation. Samples 22 February 2005. Prepared by Tasman District Council.

Easton, J. 2007a. Report on snails and sediment a year after East and West beach remediation. Samples 25 & 31 January, 23 April and 22 May 2007 Prepared by Tasman District Council.

Easton, J. 2007b. Report on assessment of mud snail and estuarine sediments: west side of Grossi Point Peninsula: 24 October 2007. Prepared by Tasman District Council.

Easton, J. 2008. Report on snails and sediment, second round after west and east beach remediation, April 2008. Prepared by Tasman District Council.

Easton, J. 2009. Report on snail and sediment quality on the west side of Grossi Point, Mapua. Sample June 2009. Prepared by Tasman District Council.

Easton, J. 2009a. Report on snail and sediment quality, third annual round after FCC west and east beach remediation. Sample 3 February 2009. Prepared by Tasman District Council.

Easton, J. 2010. Report on West FCC snails and sediment:repeat sampling on 18 January 2010. Prepared by Tasman District Council.

Hickey, C.W.; Roper, D.S.; Holland, P.T.; Trower, T.M. 1995. Accumulation of organic contaminants in two sediment-dwelling shellfish with contrasting feeding modes: Deposit-(*Macomona liliana*) and filter-feeding (*Austrovenus stutchburyi*). *Archives of Environmental Contamination and Toxicology*, 29, 221-231.

Liess, M.; Carsten, P. 2005. Analyzing effects of pesticides on invertebrate communities in streams. *Environmental Toxicology and Chemistry*, Vol. 24, 954-965.

O'Halloran, K.; Cavanagh, J.E. 2002. Investigation of organochlorine contamination in biota and sediment collected from mudflats adjacent to the Fruit Chemical Company (FCC) site at Mapua. Environmental Toxicology, Landcare Research, Lincoln, March 2002.

Pattle Delamore Partners Ltd. 2009. Audit of the remediation of the former Fruitgrowers Chemical Company site, Mapua. A report prepared by Mike Clyde and Graeme Proffitt for the Ministry of the Environment. File W01738100 R01.

Robertson, B.M.; Gillespie, P.A.; Asher, R.A.; Frisk, S.; Keeley, N.B.; Hopkins, G.A.; Thompson, S.J.; Tuckey, B.J. 2002. Estuarine Environmental Assessment and Monitoring: A National Protocol. Part A. Development, Part B. Appendices, and Part C. Application. Prepared for supporting Councils and the Ministry for the Environment, Sustainable Management Fund Contract No. 5096. Part A. 93p. Part B. 159p. Part C. 40p plus field sheets.

Scobie, S.; Buckland, S.; Ellis, H.; Salter, R. 1998. Organochlorines in New Zealand: Ambient concentrations of selected organochlorines in estuaries. Organochlorines Programme, Ministry for the Environment.

Thomson, B.; Davies, J. 1993. Interpretation of organochlorine and hydrocarbon contaminants in the Avon and Heathcote river and estuary system. Report to the Canterbury Regional Council, Christchurch, New Zealand.

Woodward-Clyde. 1996. Mapua site remediation, assessment of environmental effects. Report prepared for Tasman District Council.

Appendix 1. Estimated percentage cover of macroalgae present at impact and control sites in 16th September 2009.

Meters	Westo	control	West	FCC	East	FCC	East control (H	lunter-Brown)
	North	South	Middle	East	North	South	West	East
0	1	20	60	75	30	20	3	0
1	0	8	80	65	15	10	3	1
2	0	4	75	65	10	10	2	0
3	0	0	75	50	25	20	6	1
4	0	0	98	60	5	8	6	1
5	0	0	65	20	8	1	2	1
6	0	0	65	15	20	20	2	1
7	0	0	50	15	5	35	2	2
8	0	0	75	5	1	30	8	8
9	0	0	65	8	2	25	6	8
10	0	0	20	10	3	10	4	8
11	0	0	3	5	2	5	4	8
12	0	0	0	1	3	2	2	10
13	0	0	0	6	4	0	5	4
Mean %	0.07	2.29	52.21	28.57	9.50	14.00	3.93	3.79
Range	0-1%	0-20%	0-98%	1-75%	1-30%	0-30%	2-8%	0-10%
Ν	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00
SD	0.27	5.59	32.69	27.52	9.38	11.09	1.98	3.72
Std. error	0.07	1.50	8.74	7.36	2.51	2.96	0.53	1.00

Photo points

General Group	Таха	Common Name		East control		Eas	t FCC		East FCC	
			Per m ²	Std. dev.	95%	Per m ² Std	. dev. 95%	Per m ²	Std. dev.	95%
Sipuncula	Themiste sp. (ex Dendrostomium)	Peanut worm	39.73	34.40	19.86	79.45 91	.03 52.55			
Gastropoda	Potamopyrgus estuarinus	Estuarine snail								
Gastropoda	Amphibola crenata	Mud snail						19.86	34.40	19.86
Gastropoda	Diloma subrostrata	Top shell	39.73	68.81	39.73					
Gastropoda	Diloma zealandica	Top shell	19.86	34.40	19.86					
Gastropoda	Cominella glandiformis	Mud flat whelk	19.86	34.40	19.86					
Bivalvia	Austrovenus stutchburyi	Cockle	734.94	396.77	229.08	119.18 15	7.66 91.03	635.63	396.77	229.08
Polychaeta: Spionidae	Scolecolepides benhami	Worm						39.73	34.40	19.86
Polychaeta: Spionidae	Boccardia acus	Worm					.40 19.86			
Polychaeta: Nereidae	Nereidae (juvenile)	Rag worms				39.73 34	.40 19.86			
Polychaeta: Nereidae	Nereidae (unidentified)	Rag worms					.40 19.86			
Polychaeta: Nereidae	Nicon aestuariensis	Rag worms								
Polychaeta: Nereidae	Nereis cricognatha	Rag worms								
Polychaeta: Maldanidae	Maldanidae	Bamboo worm								
Polychaeta: Pectinidae	Pectinaria australis	Worm				59.59 59	.59 34.40			
Isopoda	Eurylana cookii	lsopod	19.86	34.40	19.86					
Amphipoda	Amphipoda A (Phoxocephalidae)	Hopper				39.73 34	.40 19.86			
Decapoda	Helice crassa	Mud crab	99.32	68.81	39.73	119.18 0	.00 0.00			
Cirripedia	Austrominius modestus (ex Elminius)	Barnacle	79.45	34.40	19.86					
Insecta	Dolichopodidae larvae	Fly larvae								
Acaria	Spider (terrestrial)	Spider				19.86 34	.40 19.86			
	Number of species		8			9		3		
	Mean number of species		5.00			6.00		2.00		
	Ν		3			3		3		
	SD		2			1		1		
	Standard error		1.15			0.58		0.58		
	Mean number of individuals per m ²		1053			596		695		
	N		15			18		6		
	SD		245.57			39.73		349.92		
	Standard error		63.41			9.36		142.85		

Appendix 2. Density of macroinvertebrates recorded from core samples (16th September 2009). Densities converted to per m² values.

General Group	Таха	Common Name						We	st c	ont	rol						Total	Mean density per m ²	Std. dev.	Std. error
			1	2	3	4	5	6	7	8	9	10	11	12	13	14				
Gastropoda	Amphibola crenata	Mud flat snail	15	4	6	6	5	17	8	13	10	10	11	16	15	13	149	10.64	4.34	1.16
Gastropoda	Zeacumantus subcarinatus	Spire shell	0	2	1	2	0	2	0	3	2	9	23	5	9	0	58	4.14	6.21	1.66
Bivalvia	Austrovenus stutchburyi	Cockle	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0.07	0.27	0.07

Appendix 3. Surface 1m² quadrat counts of macroinvertbrates from impact and control sites (16th September 2009).

General Group	Таха	Common Name						We	st F	CC) (n	ew	2)						Total	Mean density per m ²	Std. dev.	Std. error
			1	2	3	6 4		5 (6	7	8	9	10	11	12	2 1	3 [.]	14				
Gastropoda	Amphibola crenata	Mud flat snail	52	44	40) 29	3	73	97	2	47	54	66	81	59	95	8 8	83	761	54.36	16.56	4.43
Gastropoda	Zeacumantus subcarinatus	Spire shell	0	0	0	0	() ·	1	0	0	0	0	0	1		0	0	2	0.14	0.36	0.10
General Group	Таха	Common Name						We	st F	CC) (n	ew	3)						Total	Mean density per m ²	Std. dev.	Std. error
-			1	2	3	4	. !	5 (6	7	8	9	10	11	12	2 1	3	14				
Gastropoda	Amphibola crenata	Mud flat snail	45	37	47	7 43	33	64	33	37 ·	45	25	36	35	5 49	93	88 3	38	554	39.57	6.22	1.66
Gastropoda	Zeacumantus subcarinatus	Spire shell	0	0	0	0	() ()	0	0	0	0	0	0		0	1	1	0.07	0.27	0.07
Bivalvia	Zenostrobus pulex	Little black mussel	0	0	0	0	(ה ו)	4	5	Ο	2	0	0		n	0	11	0.79	1.67	0.45

General Group	Таха	Common Name				Eas	st co	ontr	ol (I	Hun	ter-	Bro	wn))			Total	Mean density per m ²	Std. dev.	Std. error
			1	2	3	4	5	6	7	8	9	10	11	12	13	14				
Gastropoda	Amphibola crenata	Mud flat snail	0	0	1	0	0	0	0	0	0	1	0	0	0	0	2	0.14	0.36	0.10
Gastropoda	Diloma subrostrata	Top shell	6	24	26	21	31	27	10	24	12	21	32	14	13	24	285	20.36	8.05	2.15
Bivalvia	Austrovenus stutchburyi	Cockle	1	0	3	58	6	5	0	0	0	0	3	0	2	17	95	6.79	15.42	4.12

General Group	Таха	Common Name					Ε	ast	FCC) (n	ew	1)					Total	Mean density per m ²	Std. dev.	Std. error
			1	2	3	4	5	6	7	8	9	10	11	12	13	3 14				
Gastropoda	Amphibola crenata	Mud flat snail	0	0	0	0	0	1	0	1	0	0	0	0	0	0	2	0.14	0.36	0.10
Gastropoda	Diloma subrostrata	Top shell	8	14	19	10	26	4	44	8	36	25	5	17	23	3 21	260	18.57	11.73	3.14

General Group	Таха	Common Name					Е	ast	FCC	C (n	ew	2)					Total	Mean density per m ²	Std. dev.	Std. error
			1	2	3	4	5	6	7	8	9	10	11	12	13	14				
Gastropoda	Amphibola crenata	Mud flat snail	0	0	0	0	0	0	0	0	0	0	0	0	5	0	5	0.36	1.34	0.36
Gastropoda	Diloma subrostrata	Top shell	11	12	18	32	38	44	13	37	15	12	12	12	9	11	276	19.71	12.24	3.27
Bivalvia	Austrovenus stutchburyi	Cockle	0	0	0	0	0	0	0	0	0	0	13	16	0	17	46	3.29	6.58	1.76

Site	Hunter-Brow n	East FCC JME 090	East FCC	West FCC JME 085	West control
Species	Cockle	Cockle	Amphibola	Amphibola	Amphibola
apooloo	3	2.5	14	6	15
	3	4	14	7	15
	3.5 4	4	15 16	7 7	17 18
	4	4	17	7	18
	6	5	17	8	18
	9 11	5 5.5	17 18	9	19 19
	11	6	18	9	19
	12	6	18	9	19
	13 14	6	18 19	9 10	19 19
	14	6 7	19	10	19
	14	7	19	10	19
	14	7 8	19 20	10	19 20
	15	8	20	11	20
	15	9	20	11	20
	15 15	10 10	20 21	11 12	20 20
	16	11	21	12	20
	16 16	11 11	21 21	12 12	20 20
	16	12	21	12	20
	17	12	22	12	20
	17	12	22	12	20
	17 17	13 13	24	12 12	20 20
	17	14		12	20
	17 18	15 16		12 12	20 20
	18	16		12	20
	18	17		13	20
	18 18	17 17		13 13	20 21
	18	17	1	13	21
	18	17		13	21
	18 18	17.5 17.5		13 13	21 21
	18	18		13	21
	18	18		13	21
	18 19	18 19		13 13	21 21
	19	20		13	21
	19	20		13	21
	19 19	20 20		13 13	21 21
	19	20		13	21 21
	19	20		14	21
	19 19	20 21		14 14	21 21
	20	21		14	21
	20	21		14	21
	20 20	21 21		14 14	21 21
	20	21		14	21
	20	21		14	22
	21	22 22		14	22 22
	21	22		14	22
	21	22		14	22
	22 22	22 23		15 15	22 24
	22	23		15	
	22 22	23 23		15 15	
	22	23		15	
	22	24		15	
	23 23	24 24		15 16	
	23	24 24		16	
	23	24			
	23 23	24 24			
	23	24			
	23	25			
	23 23	25 25			
	23	25			
	23	25			
	23 24	25 25			
	24	25			
	24	25			
	24 24	26 26			
	24	26			
	25	26			
	25 25	26 26			
	25	26			
	25 26	26			
	26	26 26			
	26	26			
	26 26	26 27			
	26	27 27			
	26	27			
	26 27	27 27			
	27	27			
	27	27	L		
	29	27 27			
		27 27			
		27			
		28			
		28 28			
		30			
		32			
Total	104	112	27	71	63
	19.29	19.26	18.96	12.24	20.16
Mean size					
	5.61	7.57	2.50	2.34	1.50
Mean size SD se				2.34 0.28	1.50 0.19

Appendix 4. Cockle and mudflat snail measurement data (16th September 2009).

Appendix 5. Photographs of core contaminant sediment samples (20 October 2009).

West control

West FCC JME 081

West FCC JME 082

West FCC JME 083

West FCC JME 084

West FCC (new1)

West FCC (new2)

West FCC (new3)

East FCC (JME 086)

East FCC (JME 087)

East FCC (JME 088)

East FCC (JME 090)

East FCC (new1)

East FCC (new2)

East control (Hunter-Brown)

Stream (low)

Stream (middle)

Stream (upper)

R J Hill Laboratories Limited Tel 1 Clyde Street Fax +64 7 858 2000 +64 7 858 2001 Fax Email mail@hil-labs.co.nz v Zealand

Web www.hilHabs.co.nz Page 1 of 7

SPv1

YSIS REPOR Т L

Client: Davidson Environmental Ltd Contact: R Davidson C/- Davidson Environmental Ltd PO Box 958 Nelson 7040

Lab No:	737701
Date Registered:	22-Oct-2009
Date Reported:	23-Nov-2009
Quote No:	37503
Order No:	
Client Reference:	
Submitted By:	R Davidson

Sample Type: Sedimer	nt					
	Sample Name:		FCC West Control Deep 20-Oct-2009 3:05	JME083 Surface 20-Oct-2009 3:35 pm	JMED83 Deep 20-Oct-2009 3:52 pm	JME081 Surface 20-Oct-2009 3:32 pm
	Lab Number:	737701.1	pm 737701.2	737701.3	737701.4	737701.5
Individual Tests	Lab Number.	13/101.1	13/101.2	13/101.3	13/101.4	13/101.3
Total Organic Carbon	g/100g dry wt	0.36	0.20	10	0.24	0.78
Organochlorine Pesticides T		0.00	0.20	1.0	0.24	0.70
Aldrin		< 0.0010	< 0.00098	< 0.0011	< 0.0010	0.0010
alpha-BHC	mg/kg dry wt mg/kg dry wt	< 0.0010	< 0.00098	< 0.0011	< 0.0010	< 0.00098
beta-BHC		< 0.0010	< 0.00098	< 0.0011	< 0.0010	< 0.00098
deta-BHC	mg/kg dry wt	< 0.0010	< 0.00098	< 0.0011	< 0.0010	< 0.00098
	mg/kg dry wt	< 0.0010	< 0.00098	0.0010	< 0.0010	0.00090
gamma-BHC (Lindane) cls-chiordane	mg/kg dry wt	< 0.0010	< 0.00098	< 0.0010	< 0.0010	< 0.00098
	mg/kg dry wt					
trans-chiordane 2.4'-DDD	mg/kg dry wt	< 0.0010	< 0.00098	< 0.0011	< 0.0010	< 0.00098
	mg/kg dry wt					
4,4'-DDD	mg/kg dry wt	< 0.0010	0.024	0.20	0.054	0.16
2,4-DDE	mg/kg dry wt	< 0.0010	0.0010	0.038	0.0075	0.027
4,4'-DDE	mg/kg dry wt	< 0.0010	0.056	0.21	0.046	0.16
2,4-DDT	mg/kg dry wt	< 0.0010	0.0015	0.025	0.017	0.010
4,4'-DDT	mg/kg dry wt	0.0014	0.016	0.10	0.11	0.091
Dieldrin	mg/kg dry wt	< 0.0010	0.0027	0.023	0.0055	0.015
Endosulfan I	mg/kg dry wt	< 0.0010	< 0.00098	< 0.0011	< 0.0010	< 0.00098
Endosulfan II	mg/kg dry wt	< 0.0010	< 0.00098	< 0.0011	< 0.0010	< 0.00098
Endosulfan sulphate	mg/kg dry wt	< 0.0010	< 0.00098	< 0.0011	< 0.0010	< 0.00098
Endrin	mg/kg dry wt	< 0.0010	< 0.00098	< 0.0011	< 0.0010	< 0.00098
Endrin aldehyde	mg/kg dry wt	< 0.0010	< 0.00098	0.0021	< 0.0010	0.0029
Endrin Ketone	mg/kg dry wt	< 0.0010	< 0.00098	< 0.0011	< 0.0010	< 0.00098
Heptachior	mg/kg dry wt	< 0.0010	< 0.00098	< 0.0011	< 0.0010	< 0.00098
Heptachlor epoxide	mg/kg dry wt	< 0.0010	< 0.00098	< 0.0011	< 0.0010	< 0.00098
Hexachlorobenzene	mg/kg dry wt	< 0.0010	< 0.00098	< 0.0011	< 0.0010	< 0.00098
Methoxychior	mg/kg dry wt	< 0.0010	< 0.00098	< 0.0011	< 0.0010	< 0.00098
Total Chiordane [(cls+trans)" 100/42]	mg/kg dry wt	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
	Sample Name:	JME081 Deep 20-Oct-2009 3:53 pm	JME082 Surface 20-Oct-2009 3:32 pm	JME082 Deep 80m 20-Oct-2009 4:00 pm	West FCC 1 (West) Surface 20-Oct-2009 4:30 pm	West FCC 1 (West) Deep 20-Oct-2009 4:30 pm
	Lab Number:	737701.6	737701.7	737701.8	737701.9	737701.10
Individual Tests		•				
Total Organic Carbon	g/100g dry wt	0.14	0.77	1.1	0.92	0.10
Organochlorine Pesticides T						

d (IANZ), which represents N ry is accre ed by in Accreditation New Zealand (IANZ), which represents New Zealand in the international Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is ry Accr n Coo tion (ILAC). ationally recognised ests reported herein

the exception of tests marked ", which

Sample Type: Sedime					West Sec. 4	March The C
	Sample Name:	JME081 Deep 20-Oct-2009 3:53 pm	JME082 Surface 20-Oct-2009 3:32 pm	JME082 Deep 80m 20-Oct-2009 4:00 pm	West FCC 1 (West) Surface 20-Oct-2009 4:30	West FCC 1 (West) Deep 20-Oct-2009 4:30
					pm	pm
	Lab Number:	737701.6	737701.7	737701.8	737701.9	737701.10
Organochiorine Pesticides T	race in Soil					
Aldrin	mg/kg dry wt	0.0025	< 0.0010	< 0.00099	< 0.00099	< 0.0011
alpha-BHC	mg/kg dry wt	< 0.00099	< 0.0010	< 0.00099	< 0.00099	< 0.0011
beta-BHC	mg/kg dry wt	< 0.00099	< 0.0010	< 0.00099	< 0.00099	< 0.0011
delta-BHC	mg/kg dry wt	< 0.00099	< 0.0010	< 0.00099	< 0.00099	< 0.0011
gamma-BHC (Lindane)	mg/kg dry wt	0.0021	< 0.0010	0.0011	< 0.00099	< 0.0011
cis-chiordane	mg/kg dry wt	< 0.00099	< 0.0010	< 0.00099	< 0.00099	< 0.0011
trans-chiordane	mg/kg dry wt	< 0.00099	< 0.0010	< 0.00099	< 0.00099	< 0.0011
2,4'-DDD	mg/kg dry wt	0.081	0.018	0.044	0.014	< 0.0011
4,4'-DDD	mg/kg dry wt	0.15	0.046	0.15	0.033	0.0012
2,4'-DDE	mg/kg dry wt	0.031	0.0062	0.013	0.0039	< 0.0011
4,4'-DDE	mg/kg dry wt	0.18	0.039	0.11	0.057	0.0026
2,4'-DDT	mg/kg dry wt	0.15	0.0073	0.022	0.0020	< 0.0011
4,4'-DDT	mg/kg dry wt	0.72	0.040	0.40	0.031	0.0035
Dieldrin	mg/kg dry wt	0.011	0.0028	0.0015	0.0027	< 0.0011
Endosulfan I	mg/kg dry wt	< 0.00099	< 0.0010	< 0.00099	< 0.00099	< 0.0011
Endosulfan II	mg/kg dry wt	< 0.00099	< 0.0010	< 0.00099	< 0.00099	< 0.0011
Endosulfan sulphate	mg/kg dry wt	< 0.00099	< 0.0010	< 0.00099	< 0.00099	< 0.0011
Endrin	mg/kg dry wt	< 0.00099	< 0.0010	< 0.00099	< 0.00099	< 0.0011
Endrin aldehyde	mg/kg dry wt	0.0080	< 0.0010	< 0.00099	< 0.00099	< 0.0011
Endrin Ketone	mg/kg dry wt	< 0.00099	< 0.0010	< 0.00099	< 0.00099	< 0.0011
Heptachior	mg/kg dry wt	< 0.00099	< 0.0010	< 0.00099	< 0.00099	< 0.0011
Heptachlor epoxide	mg/kg dry wt	< 0.00099	< 0.0010	< 0.00099	< 0.00099	< 0.0011
Hexachlorobenzene	mg/kg dry wt	< 0.00099	< 0.0010	< 0.00099	< 0.00099	< 0.0011
Methoxychior	mg/kg dry wt	< 0.00099	< 0.0010	< 0.00099	< 0.00099	< 0.0011
Total Chiordane [(cls+trans)" 100/42]	mg/kg dry wt	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
	Sample Name:	West FCC 2 (Middle) Surface	West FCC 2 (Middle) Deep	West FCC 3 (East) Surface	West FCC (East) Deep	20-Oct-2009 3:33
		20-00-2009 4.30 pm	20-Oct-2009 4:30 pm	20-00-2009 4.30 pm	20-Oct-2009 4:30 pm	pm
	Lab Number:	737701.11	737701.12	737701.13	737701.14	737701.15
Individual Tests	cap maniper.					
Total Organic Carbon	a/100a drv wt	1.9	0.12	0.33	0.087	0.89
Total Organic Carbon	g/100g dry wt	1.9	0.12	0.33	0.087	0.89
Organochiorine Pesticides T	race in Soli					
Organochiorine Pesticides T Aldrin	race in Soli mg/kg dry wt	< 0.0011	< 0.0010	< 0.00099	< 0.00099	< 0.00099
Organochiorine Pesticides T Aldrin alpha-BHC	race in Soli mg/kg dry wt mg/kg dry wt	< 0.0011 < 0.0011	< 0.0010 < 0.0010	< 0.00099 < 0.00099	< 0.00099 < 0.00099	< 0.00099 < 0.00099
Organochiorine Pesticides T Aldrin alpha-BHC beta-BHC	race in Soli mg/kg dry wt mg/kg dry wt mg/kg dry wt	< 0.0011 < 0.0011 < 0.0011	< 0.0010 < 0.0010 < 0.0010	< 0.00099 < 0.00099 < 0.00099	< 0.00099 < 0.00099 < 0.00099	< 0.00099 < 0.00099 < 0.00099
Organochiorine Pesticides T Aldrin alpha-BHC beta-BHC delta-BHC	race in Soll mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	< 0.0011 < 0.0011 < 0.0011 < 0.0011	< 0.0010 < 0.0010 < 0.0010 < 0.0010	< 0.00099 < 0.00099 < 0.00099 < 0.00099	< 0.00099 < 0.00099 < 0.00099 < 0.00099	< 0.00099 < 0.00099 < 0.00099 < 0.00099
Organochiorine Pesticides T Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane)	race in Soil mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	< 0.0011 < 0.0011 < 0.0011 < 0.0011 0.0022	< 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010	< 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099	< 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099	< 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099
Organochiorine Pesticides T Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) cls-chiordane	race in Soil mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	< 0.0011 < 0.0011 < 0.0011 < 0.0011 0.0022 < 0.0011	< 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010	< 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099	< 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099	< 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099
Organochiorine Pesticides T Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) cls-chiordane trans-chiordane	race in Soli mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	< 0.0011 < 0.0011 < 0.0011 < 0.0011 0.0022 < 0.0011 < 0.0011	< 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010	< 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099	< 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099	< 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099
Organochlorine Pesticides T Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) cis-chlordane trans-chlordane 2,4-DDD	race in Soli mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	< 0.0011 < 0.0011 < 0.0011 < 0.0011 0.0022 < 0.0011 < 0.0011 0.19	< 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 0.0012	< 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 0.014	< 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099	< 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 0.014
Organochiorine Pesticides T Aldrin alpha-BHC beta-BHC deita-BHC gamma-BHC (Lindane) cls-chiordane trans-chiordane 2,4-DDD 4,4-DDD	race in Soli mg/kg dry wt mg/kg dry wt	< 0.0011 < 0.0011 < 0.0011 < 0.0011 0.0022 < 0.0011 < 0.0011 0.19 0.53	< 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 0.0012 0.0025	< 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 0.014 0.031	< 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099	< 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 0.014 0.051
Organochiorine Pesticides T Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) cis-chiordane trans-chiordane 2,4-DDD 4,4-DDD 2,4-DDE	race in Soli mg/kg dry wt mg/kg dry wt	< 0.0011 < 0.0011 < 0.0011 < 0.0011 0.0022 < 0.0011 < 0.0011 0.19 0.53 0.041	< 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 0.0012 0.0025 < 0.0010	< 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 0.014 0.031 0.0060	< 0.00099 < 0.00099	< 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 0.014 0.051 0.0038
Organochlorine Pesticides T Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) cis-chlordane trans-chlordane 2,4-DDD 4,4-DDD 2,4-DDE 4,4-DDE	race in Soil mg/kg dry wt mg/kg dry wt	< 0.0011 < 0.0011 < 0.0011 < 0.0011 0.0022 < 0.0011 < 0.0011 0.19 0.53 0.041 0.48	< 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 0.0012 0.0025 < 0.0010 0.0029	< 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 0.014 0.031 0.0060 0.047	< 0.00099 < 0.00099	< 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 0.014 0.051 0.0038 0.054
Organochlorine Pesticides T Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) cis-chlordane trans-chlordane 2,4-DDD 4,4-DDD 2,4-DDE 4,4-DDE 2,4-DDT	race in Soil mg/kg dry wt mg/kg dry wt	< 0.0011 < 0.0011 < 0.0011 < 0.0011 0.0022 < 0.0011 < 0.0011 0.19 0.53 0.041 0.48 0.0080	< 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 0.0012 0.0025 < 0.0010 0.0029 < 0.0010	<0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 0.014 0.031 0.0060 0.047 0.0032	< 0.00099 < 0.00099	< 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 0.014 0.051 0.0038 0.054 0.0028
Organochlorine Pesticides T Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) cis-chlordane trans-chlordane 2,4-DDD 4,4-DDD 2,4-DDE 4,4-DDE 2,4-DDT 4,4-DDT	race in Soil mg/kg dry wt mg/kg dry wt	< 0.0011 < 0.0011 < 0.0011 < 0.0011 0.0022 < 0.0011 < 0.0011 0.19 0.53 0.041 0.48 0.0080 0.094	< 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0012 0.0025 < 0.0010 0.0029 < 0.0010 0.0029	<0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 <0.00099 0.014 0.031 0.0060 0.047 0.0032 0.023	 < 0.00099 	< 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 0.014 0.051 0.0038 0.054 0.0028 0.016
Organochlorine Pesticides T Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) cis-chlordane trans-chlordane 2,4-DDD 4,4-DDD 2,4-DDE 4,4-DDE 2,4-DDT 2,4-DDT Dieldrin	race in Soil mg/kg dry wt mg/kg dry wt	< 0.0011 < 0.0011 < 0.0011 0.0022 < 0.0011 < 0.0011 < 0.0011 0.19 0.53 0.041 0.48 0.0080 0.094 0.024	< 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 0.0012 0.0025 < 0.0010 0.0029 < 0.0010 0.0014 < 0.0010	 < 0.00099 < 0.014 0.014 0.014 0.056 0.047 0.0032 0.023 0.0036 	 < 0.00099 	< 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 0.014 0.051 0.0038 0.054 0.0028 0.016 0.0025
Organochlorine Pesticides T Aldrin alpha-BHC beta-BHC detta-BHC gamma-BHC (Lindane) cis-chlordane trans-chlordane 2,4-DDD 4,4-DDD 2,4-DDE 4,4-DDE 2,4-DDE 4,4-DDT bieldrin Endosulfan I	race in Soil mg/kg dry wt mg/kg dry wt	< 0.0011 < 0.0011 < 0.0011 < 0.0011 0.0022 < 0.0011 < 0.0011 0.19 0.53 0.041 0.48 0.0080 0.094 0.024 < 0.0011	< 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0012 0.0025 < 0.0010 0.0029 < 0.0010 0.0014 < 0.0010	 < 0.00099 < 0.0014 < < < <li<<<<< <li<<<<<<<<<<<<<<<<<<<<<<<<<</li<<<</li<<	 < 0.00099 	< 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 0.014 0.051 0.0038 0.054 0.0028 0.016 0.0025 < 0.00099
Organochiorine Pesticides T Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) cls-chiordane trans-chiordane 2,4-DDD 4,4-DDD 2,4-DDE 2,4-DDE 2,4-DDE 2,4-DDT bieldrin Endosulfan I Endosulfan II	race in Soil mg/kg dry wt mg/kg dry wt	< 0.0011 < 0.0011 < 0.0011 < 0.0011 0.0022 < 0.0011 0.19 0.53 0.041 0.48 0.0080 0.094 0.024 < 0.0011 < 0.0011	< 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 0.0012 0.0025 < 0.0010 0.0029 < 0.0010 0.0014 < 0.0010 < 0.0010 < 0.0010 < 0.0010	 < 0.00099 < 0.0014 < 0.031 < 0.060 < 0.047 < 0.0032 < 0.0032 < 0.0036 < 0.00099 	 < 0.00099 	 < 0.00099 < 0.0014 0.014 0.014 0.038 0.054 0.025 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099 < 0.00099
Organochiorine Pesticides T Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) cis-chiordane trans-chiordane trans-chiordane 2,4-DDD 2,4-DDD 2,4-DDE 2,4-DDT Dieldrin Endosulfan I Endosulfan Sulphale	race in Soil mg/kg dry wt mg/kg dry wt	< 0.0011 < 0.0011 < 0.0011 < 0.0011 0.0022 < 0.0011 < 0.0011 0.19 0.53 0.041 0.080 0.094 0.024 < 0.0011 < 0.0011 < 0.0011	< 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 0.0012 0.0025 < 0.0010 0.0029 < 0.0010 0.0014 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010	 < 0.00099 < 0.0014 < 0.031 < 0.0060 < 0.047 < 0.0032 < 0.023 < 0.0036 < 0.00099 	 < 0.00099 	 < 0.00099 < 0.0014 0.014 0.051 0.0038 0.016 0.0025 < 0.00099 < 0.00099 < 0.00099
Organochiorine Pesticides T Aldrin alpha-BHC bela-BHC delta-BHC gamma-BHC (Lindane) cis-chiordane trans-chiordane trans-chiordane 2,4-DDD 4,4-DDD 2,4-DDE 4,4-DDE 2,4-DDT Dieldrin Endosulfan I Endosulfan I Endosulfan II Endosulfan sulphale	race in Soil mg/kg dry wt mg/kg dry wt	< 0.0011 < 0.0011 < 0.0011 < 0.0011 0.0022 < 0.0011 0.19 0.53 0.041 0.48 0.0080 0.094 0.024 < 0.0011 < 0.0011 < 0.0011 < 0.0011	< 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0012 0.0025 < 0.0010 0.0029 < 0.0010 0.0014 < 0.0010 <	 < 0.00099 < 0.014 0.014 0.031 0.0060 0.047 0.0036 < 0.00099 	 < 0.00099 < 0.00099	 < 0.00099 < 0.014 0.051 0.0038 0.054 0.0028 < 0.0025 < 0.00099
Organochiorine Pesticides T Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) cis-chiordane trans-chiordane trans-chiordane 2,4-DDD 2,4-DDD 2,4-DDE 2,4-DDT Dieldrin Endosulfan I Endosulfan Sulphale	race in Soil mg/kg dry wt mg/kg dry wt	< 0.0011 < 0.0011 < 0.0011 < 0.0011 0.0022 < 0.0011 < 0.0011 0.19 0.53 0.041 0.080 0.094 0.024 < 0.0011 < 0.0011 < 0.0011	< 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010 0.0012 0.0025 < 0.0010 0.0029 < 0.0010 0.0014 < 0.0010 < 0.0010 < 0.0010 < 0.0010 < 0.0010	 < 0.00099 < 0.0014 < 0.031 < 0.0060 < 0.047 < 0.0032 < 0.023 < 0.0036 < 0.00099 	 < 0.00099 	 < 0.00099 < 0.0014 0.014 0.051 0.0038 0.016 0.0025 < 0.00099 < 0.00099 < 0.00099

Lab No: 737701 v 1

Hill Laboratories

Page 2 of 7

Sample Type: Sedimen	nt					
	Sample Name:	West FCC 2	West FCC 2	West FCC 3	West FCC (East)	JME0084 Surface
	compre name.	(Middle) Surface	(Middle) Deep	(East) Surface 20-Oct-2009 4:30	Deep	20-Oct-2009 3:33 pm
		20-00-2009 4.30 pm	20-00-2009 4.30 pm	20-00-2009 4.30 pm	20-00-2009 4.30 pm	pm
	Lab Number:	737701.11	737701.12	737701.13	737701.14	737701.15
Organochiorine Pesticides Tr	race in Soli					
Heptachior	mg/kg dry wt	< 0.0011	< 0.0010	< 0.00099	< 0.00099	< 0.00099
Heptachlor epoxide	mg/kg dry wt	< 0.0011	< 0.0010	< 0.00099	< 0.00099	< 0.00099
Hexachlorobenzene	mg/kg dry wt	< 0.0011	< 0.0010	< 0.00099	< 0.00099	< 0.00099
Methaxychior	mg/kg dry wt	< 0.0011	< 0.0010	< 0.00099	< 0.00099	< 0.00099
Total Chiordane ((cis+trans)* 100/42]		< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
	Sample Name:	JME0084 Deep	JME088 High	JME088 High	JME087 Mid	JME087 Mid
	sample Name.	20-Oct-2009 3:55 pm	Surface 20-Oct-2009 5:50	Deep 20-Oct-2009 5:50 pm		Deep
			pm		pm	pm
In the second second	Lab Number:	737701.16	737701.17	737701.18	737701.19	737701.20
Individual Tests						
Total Organic Carbon	g/100g dry wt	0.11	1.6	0.52	0.97	0.40
Organochiorine Pesticides Tr	race in Soli					
Aldrin	mg/kg dry wt	< 0.00099	< 0.0011	< 0.0010	< 0.00098	< 0.0010
alpha-BHC	mg/kg dry wt	< 0.00099	< 0.0011	< 0.0010	< 0.00098	< 0.0010
beta-BHC	mg/kg dry wt	< 0.00099	< 0.0011	< 0.0010	< 0.00098	< 0.0010
delta-BHC	mg/kg dry wt	< 0.00099	< 0.0011	< 0.0010	< 0.00098	< 0.0010
gamma-BHC (Lindane)	mg/kg dry wt	< 0.00099	< 0.0011	< 0.0010	< 0.00098	< 0.0010
cls-chlordane	mg/kg dry wt	< 0.00099	< 0.0011	< 0.0010	< 0.00098	< 0.0010
trans-chiordane	mg/kg dry wt	< 0.00099	< 0.0011	< 0.0010	< 0.00098	< 0.0010
2,4'-DDD	mg/kg dry wt	< 0.00099	0.014	0.0049	0.0038	0.0028
4,4'-000	mg/kg dry wt	0.0021	0.033	0.0062	0.015	0.0036
2,4'-DDE	mg/kg dry wt	< 0.00099	0.0021	0.0044	< 0.00098	0.0011
4,4'-DDE	mg/kg dry wt	0.0036	0.037	0.031	0.011	0.013
2,4'-DDT	mg/kg dry wt	< 0.00099	0.019	0.014	0.015	0.011
4,4'-DDT	mg/kg dry wt	0.0010	0.12	0.078	0.059	0.053
Dieldrin	mg/kg dry wt	< 0.00099	0.0044	0.0063	< 0.00098	< 0.0010
Endosulfan I	mg/kg dry wt	< 0.00099	< 0.0011	< 0.0010	< 0.00098	< 0.0010
Endosulfan II	mg/kg dry wt	< 0.00099	< 0.0011	< 0.0010	< 0.00098	< 0.0010
Endosulfan sulphate	mg/kg dry wt	< 0.00099	< 0.0011	< 0.0010	< 0.00098	< 0.0010
Endrin	mg/kg dry wt	< 0.00099	< 0.0011	< 0.0010	< 0.00098	< 0.0010
Endrin aldehyde	mg/kg dry wt	< 0.00099	< 0.0011	< 0.0010	0.0015	< 0.0010
Endrin Ketone	mg/kg dry wt	< 0.00099	< 0.0011	< 0.0010	< 0.00098	< 0.0010
Heptachior	mg/kg dry wt	< 0.00099	< 0.0011	< 0.0010	< 0.00098	< 0.0010
Heptachior epoxide	mg/kg dry wt	< 0.00099	< 0.0011	< 0.0010	< 0.00098	< 0.0010
Hexachlorobenzene	ma/kg dry wt	< 0.00099	< 0.0011	< 0.0010	< 0.00098	< 0.0010
Methoxychior	ma/kg dry wt	< 0.00099	< 0.0011	< 0.0010	< 0.00098	< 0.0010
Total Chiordane ((cls+trans)* 100/42]	mg/kg dry wt	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
	Sample Name:	JME086 Low	JME086 Deep	East FCC New 1	East FCC New 1	East FCC New 2
	sample name.	Surface	Low Deep	Surface	Deep	Surface
		pm	pm	20-Oct-2009 6:14 pm	pm	pm
Induidual Task	Lab Number:	737701.21	737701.22	737701.23	737701.25	737701.27
Individual Tests						
Total Organic Carbon	g/100g dry wt	0.30	0.13	1.1	0.35	0.89
Organochiorine Pesticides Tr						
Aldrin	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.00099
alpha-BHC	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.00099
beta-BHC	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.00099
delta-BHC	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.00099
gamma-BHC (Lindane)	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.00099
garma erro (erraare)						
cls-chiordane	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.00099

Sample Type: Sedimer	n					
	Sample Name:	JME086 Low	JME086 Deep	East FCC New 1	East FCC New 1	East FCC New 2
		Surface 20-Oct-2009 6:00	Low Deep 20-Oct-2009 5:51	Surface 20-Oct-2009 6:14	Deep 20-Oct-2009 6:14	Surface 20-Oct-2009 6:1
		pm	pm	pm	pm	pm
	Lab Number:	737701.21	737701.22	737701.23	737701.25	737701.27
Organochiorine Pesticides Ti						
2,4'-DDD	mg/kg dry wt	0.0031	0.016	0.014	0.0035	0.0073
4,4°-DDD	mg/kg dry wt	0.014	0.035	0.038	0.0069	0.025
2,4'-DDE	mg/kg dry wt	< 0.0010	0.0046	< 0.0010	< 0.0010	< 0.00099
4,4'-DDE	mg/kg dry wt	0.0068	0.20	0.038	0.014	0.018
2,4'-DDT	mg/kg dry wt	0.0018	0.091	0.034	0.0040	0.010
4,4'-DDT	mg/kg dry wt	0.014	0.32	0.16	0.024	0.084
Dieldrin	mg/kg dry wt	0.0013	0.0083	0.0038	0.0017	0.0050
Endosulfan I	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.00099
Endosulfan II	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.00099
Endosulfan sulphate	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.00099
Endrin	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.00099
Endrin aldehyde	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.0056
Endrin Ketone	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.00099
Heptachior	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.00099
Heptachlor epoxide	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.00099
Hexachlorobenzene	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.00099
Methoxychior	ma/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.00099
Total Chlordane ((cls+trans)* 100/42)		< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
10042						
	Sample Name:	East FCC New 2 Deep	JME090 Surface 20-Oct-2009 6:15	JME090 Deep 20-Oct-2009 6:17	East Control Hunter Brown	East Control Hunter-Brown
		20-Oct-2009 6:15	pm	pm	Surface	Deep
		pm			20-Oct-2009 7:00	
		737701.28	737701.29	737701.30	pm 737701.31	pm 737701.32
Individual Tests	Lab Number:	73/701.20	13/101.29	737701.30	rarrut.at	131101.32
	alii00a davut	0.46	0.66	0.51	0.47	0.076
Total Organic Carbon	g/100g dry wt	U.40	U.00	0.51	0.47	0.076
Organochiorine Pesticides Ti						
Aldrin	mg/kg dry wt	0.0072	0.0016	0.028	< 0.00099	< 0.0010
alpha-BHC	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.00099	< 0.0010
beta-BHC	mg/kg dry wt	< 0.0010	< 0.0010	0.0012	< 0.00099	< 0.0010
delta-BHC	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.00099	< 0.0010
gamma-BHC (Lindane)	mg/kg dry wt	< 0.0010	< 0.0010	0.0026	< 0.00099	< 0.0010
cis-chiordane	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.00099	< 0.0010
trans-chiordane	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.00099	< 0.0010
2,4'-000	mg/kg dry wt	0.086	0.39	0.47	< 0.00099	< 0.0010
4,4'-DDD	mg/kg dry wt	0.11	1.0	1.2	< 0.00099	0.0026
2,4-DDE	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.00099	< 0.0010
4,4'-DDE	mg/kg dry wt	0.31	0.11	0.37	< 0.00099	0.0011
2,4'-DDT	mg/kg dry wt	0.35	0.029	0.17	< 0.00099	< 0.0010
4,4'-DDT	mg/kg dry wt	0.99	0.21	0.85	< 0.00099	0.0020
Dieldrin	mg/kg dry wt	0.10	0.16	0.30	< 0.00099	< 0.0010
Endosulfan I	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.00099	< 0.0010
Endosulfan II	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.00099	< 0.0010
Endosulfan sulphate	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.00099	< 0.0010
Endrin	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.00099	< 0.0010
Endrin aldehyde		< 0.0010		< 0.0010	< 0.00099	< 0.0010
	mg/kg dry wt		< 0.0010			
Endrin Ketone	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.00099	< 0.0010
Heptachior	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.00099	< 0.0010
Unadarables and 14-	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	< 0.00099	< 0.0010
				< 0.0010	< 0.00099	< 0.0010
Heptachior epoxide Hexachiorobenzene	mg/kg dry wt	< 0.0010	< 0.0010			
	mg/kg dry wt	< 0.0010 < 0.0010 < 0.0020	< 0.0010 < 0.0010 < 0.0020	< 0.0010	< 0.00099	< 0.0010

Lab No: 737701 v 1

Hill Laboratories

Page 4 of 7

Sample Type: Shellfish						
1 21	ample Name:	East FCC Cockle	East Control Hunter Brown			
		JMEU9U	Cockies			
	Lab Number:	737701.38	737701.39			
Individual Tests						
Dry Matter	g/100g as revd	16	14	-	-	-
Organochiorine Pesticides In B	Iomatter					
Aldrin	mg/kg	< 0.00050	< 0.00050	-	-	-
alpha-BHC	mg/kg	< 0.00050	< 0.00050	-	-	-
beta-BHC	mg/kg	< 0.00050	< 0.00050	-	-	-
delta-BHC	mg/kg	< 0.00050	< 0.00050	-	-	-
gamma-BHC (Lindane)	mg/kg	< 0.00050	< 0.00050	-	-	-
cls-chlordane	mg/kg	< 0.00050	< 0.00050	-	-	-
trans-chiordane	mg/kg	< 0.00050	< 0.00050	-	-	-
2,4'-DDD	mg/kg	0.0012	< 0.00050	-	-	-
4,4'-DDD	mg/kg	0.0044	0.00069	-	-	-
2,4'-DDE	mg/kg	< 0.00050	< 0.00050	-	-	-
4,4'-DDE	mg/kg	0.0041	0.0011	-	-	-
2,4'-DDT	mg/kg	< 0.00050	< 0.00050	-	-	-
4,4'-DDT	mg/kg	0.00081	< 0.00050	-	-	-
Dieldrin	mg/kg	0.0028	< 0.00050	-	-	-
Endosulfan I	mg/kg	< 0.00050	< 0.00050	-	-	-
Endosulfan II	mg/kg	< 0.00050	< 0.00050	-	-	-
Endosulfan sulfate	mg/kg	< 0.00050	< 0.00050	-	-	-
Endrin	mg/kg	< 0.00050	< 0.00050	-	-	-
Endrin aldehyde	mg/kg	< 0.00050	< 0.00050	-	-	-
Endrin Ketone	mg/kg	< 0.00050	< 0.00050	-	-	-
Heptachior	mg/kg	< 0.00050	< 0.00050	-	-	-
Heptachlor epoxide	mg/kg	< 0.00050	< 0.00050	-	-	-
Hexachlorobenzene	mg/kg	< 0.00050	< 0.00050	-	-	-
Methoxychior	mg/kg	< 0.00050	< 0.00050	-	-	-
Total Chlordane [(cls+trans)"10	0/42] mg/kg	< 0.0020	< 0.0020	-	-	-
Sample Type: Snails						
S	iample Name:	West FCC Control Amphibola 20-Oct-2009	West FCC JME084 Amphibola 20-Oct-2009	East FCC New 2 Soft Diloma 20-Oct-2009	East FCC New 2 Rocky Diloma	East FCC Amphibola
	Lab Number:	737701.33	737701.34	737701.35	737701.36	737701.37
Individual Tests						
Dry Matter	g/100g as revd	17	16	24	25	18
Orenneshiedes Destinides in R						

		Amphibola 20-Oct-2009	Amphibola 20-Oct-2009	20-Oct-2009	-	
	Lab Number:	737701.33	737701.34	737701.35	737701.36	737701.37
Individual Tests						
Dry Matter	g/100g as revd	17	16	24	25	18
Organochiorine Pesticides I	n Blomatter					
Aldrin	mg/kg	< 0.00050	< 0.0015	< 0.00050	< 0.00050	< 0.00050
alpha-BHC	mg/kg	< 0.00050	< 0.0015	< 0.00050	< 0.00050	< 0.00050
beta-BHC	mg/kg	< 0.00050	< 0.0015	< 0.00050	< 0.00050	< 0.00050
delta-BHC	mg/kg	< 0.00050	< 0.0015	< 0.00050	< 0.00050	< 0.00050
gamma-BHC (Lindane)	mg/kg	< 0.00050	< 0.0015	< 0.00050	< 0.00050	< 0.00050
cis-chiordane	mg/kg	< 0.00050	< 0.0015	< 0.00050	< 0.00050	< 0.00050
trans-chlordane	mg/kg	< 0.00050	< 0.0015	< 0.00050	< 0.00050	< 0.00050
2,4°-DDD	mg/kg	< 0.00050	1.8	0.013	0.0095	0.12
4,4°-DDD	mg/kg	0.015	5.9	0.082	0.067	0.46
2,4'-DDE	mg/kg	< 0.00050	0.18	0.0036	0.0019	0.0069
4,4'-DDE	mg/kg	0.068	11	0.080	0.058	0.44
2,4°-DDT	mg/kg	< 0.00050	0.11	0.0017	0.0011	0.013
4,4°-DDT	mg/kg	0.012	3.1	0.0088	0.0090	0.31
Dieldrin	mg/kg	0.0020	0.52	0.027	0.031	0.23
Endosulfan I	mg/kg	< 0.00050	< 0.0015	< 0.00050	< 0.00050	< 0.00050
Endosulfan II	mg/kg	< 0.00050	< 0.0015	< 0.00050	< 0.00050	< 0.00050
Endosulfan sulfate	mg/kg	< 0.00050	< 0.0015	< 0.00050	< 0.00050	< 0.00050
Endrin	mg/kg	< 0.00050	< 0.0015	< 0.00050	< 0.00050	< 0.00050

Lab No: 737701 v 1

Hill Laboratories

Page 5 of 7

Sa	mple Name:	West FCC Control Amphibola 20-Oct-2009	West FCC JME084 Amphibola 20-Oct-2009	East FCC New 2 Soft Diloma 20-Oct-2009	East FCC New 2 Rocky Diloma	East FCC Amphibola
L	ab Number:	737701.33	737701.34	737701.35	737701.36	737701.37
Organochiorine Pesticides in Bio	matter					
Endrin aldehyde	mg/kg	< 0.00050	< 0.0015	< 0.00050	< 0.00050	< 0.00050
Endrin Ketone	mg/kg	< 0.00050	< 0.0015	< 0.00050	< 0.00050	< 0.00050
Heptachlor	mg/kg	< 0.00050	< 0.0015	< 0.00050	< 0.00050	< 0.00050
Heptachior epoxide	mg/kg	< 0.00050	< 0.0015	< 0.00050	< 0.00050	< 0.00050
Hexachlorobenzene	mg/kg	< 0.00050	< 0.0015	< 0.00050	< 0.00050	< 0.00050
Methoxychior	mg/kg	< 0.00050	< 0.0015	< 0.00050	< 0.00050	< 0.00050
Total Chiordane ((cis+trans)*100/	42] mg/kg	< 0.0020	< 0.0021	< 0.0020	< 0.0020	< 0.0020

Analyst's Comments

Attached are the particle size results The samples have particles greater than 2mm and therefore the results are made up of a combination of lasersizer results and sieving results. The excel spreadsheet has the final results. Also included are the lasersizer results which only show the results of part of the sample which was less that 2mm.

Appendix No.1 - Particle Size Results

Appendix No.2 - Particle Size Results Appendix No.3 - Particle Size Results Appendix No.4 - Particle Size Results Appendix No.5 - Particle Size Results Appendix No.6 - Particle Size Results Appendix No.7 - Particle Size Results Appendix No.8 - Particle Size Results Appendix No.9 - Particle Size Results Appendix No.10 - Particle Size Results Appendix No.11 - Particle Size Results Appendix No.12 - Particle Size Results Appendix No.13 - Particle Size Results Appendix No.14 - Particle Size Results Appendix No.15 - Particle Size Results Appendix No.16 - Final Results

SUMMARY OF METHODS

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that diutions be performed during analysis.

Sample Type: Sediment			
Test	Method Description	Default Detection Limit	Samples
Environmental Solids Sample Preparation	Air dried at 35°C and sieved, <2mm fraction.	-	1-23, 25, 27-32
Organochiorine Pesticides Trace In Soil	Sonication extraction, SPE cleanup, GPC cleanup (If required), dual column GC-ECD analysis	-	1-23, 25, 27-32
Particle size analysis*	Maivern Laser Sizer particle size analysis. Subcontracted to Earth Sciences Department, Waikato University, Hamilton.	-	1-6, 11-12, 17-18, 23, 25, 29-31
Total Organic Carbon	Acid pretreatment to remove carbonates if present, Elementar Combustion Analyser.	0.050 g/100g dry wt	1-23, 25, 27-32
Sample Type: Snails			
Test	Method Description	Default Detection Limit	Samples

Lab No: 737701 v 1

Hill Laboratories

Page 6 of 7

Sample Type: Snails									
Test	Method Description	Default Detection Limit	Samples						
Homogenisation of Biological samples for Organics Tests"	Mincing, chopping, or blending of sample to form homogenous sample fraction.	-	33-39						
Shucking of Shelifish*	Removal of tissue from shell. Analysis performed at Hill Laboratories - Food & Bioanalytical Division, Walkato Innovation Park, Ruakura Lane, Hamilton.	-	33-39						
Organochiorine Pesticides In Biomatter	Sonication extraction, SPE cleanup, GPC cleanup, dual column GC-ECD analysis	-	33-39						
Dry Matter (Env)	Dried at 103°C (removes 3-5% more water than air dry) for 18hr, gravimetry. US EPA 3550.	0.10 g/100g as revd	33-39						

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This report must not be reproduced, except in full, without the written consent of the signatory.

477

Ara Heron BSc (Tech) Client Services Manager - Environmental Division

Lab No: 737701 v 1

Hill Laboratories

Page 7 of 7

Appendix No.1 - Particle Size Results - Page 1 of 1

MASTERSIZER

Result Analysis Report

Sample Name: 737701.1 FCC West Control Surface Sample Source & type:		SOP Name : Marine Sediment Measured by: rodgers				Measured: Tuesday, 17 November 2009 11:32:11 a.m. Analysed: Tuesday, 17 November 2009 11:32:12 a.m.							
Sample 2009118		ref:		Result 9 Measure									
Particle Name: Marine Sediment Particle RI: 1.500			Accessory Name: Hydro 2000G (A) Absorption:			Gener	Analysis model: General purpose Size range: 0.020 to 2000.000 um			Sensitivity: Enhanced Obscuration: 23.39 %			
Dispersa Water	ant Name			Dispers 1.330	ant RI:			Weigh 0.816	nted Residua %	l:		Result Em Off	ulation:
Concent 0.0999	tration: %Vol			Span : 3.285				Unifor 1.06	rmity:			Result unit Volume	S :
Specific 0.195	Surface m∛g	Area:		Surface 30.726	Weighted N um	lean D[3	3,2]:	Vol. W 255.37	/eighted Me 70 um	an D[4,3	8]:		
d(0.1):	9.918	3 U	m		d(0.5)	: 182.	.015 u	m			d(0.9):	607.769	um
Γ		6			Partic	ale Size	Distributi	on]
		5							\wedge				
	8	4 —											
	Volume (%)	3							/				
	Ŷ	2											
		1				\checkmark							
		0.01	0.1				10	1	100	100	0 300	0	
	_73770	1.1 FCC	West Cont	rol Surfac	Par e, Tuesday,		ze (µm) /ember 2	009 11:32	2:11 a.m.				-
L L		Volume in		Volume in %	Size (µm) Volu 37.000		Size (µm) 105.000		Size (µm) Volu 300.000	me in %	Size (µm) 840,000	Volume in %	

Operator notes:

n instruments Ltd. am, UK

Mastersizer 2000 Ver. 5.22 Serial Number : MAL102144

File name: Hill Record Number: 218

Appendix No.2 - Particle Size Results - Page 1 of 1

MASTERSIZER

Result Analysis Report

Sample 737701.2			Control (Contr	ol	_	P Nai ine S		ent						Mea Tues			Nove	mbe	er 20	09 11:	40:3	3 a.m.	
Sample	Source	e & typ	e:			Mea rodg	isur e gers	ed by							Anal Tues			Nove	əmb	er 2(009 11	:40:	34 a.m.	
Sample 2009118		t ref:					ult S Isure																	
Particle Marine S Particle 1.500 Dispersa	edimer RI:	nt				Hyd Abs 0 Disp	ro 20 lorpti persa	ion:		1					Size 0.02 Weig	eral ran 0 ghte	purp ge: to d Re	ose 20 sidu		000	um	E 0 2 R	ensitivity inhanced Obscurati 2.66 % lesult En	on:
Water						1.33									0.75	_	%						Xff	
Concent 0.0858	tration %V					Spa 3.02									Unif 0.96		ity:						lesuit un olume	its:
Specific 0.216	Surfa m∛		a :			Sur 27.7		Wei u	ghteo m	1 Me	an D	[3,2	2]:		VoL 209.				ean	D[4,	,3]:			
d(0.1):	9.0	03	um						d(0	.5):	15	9.04	46	um							d(0.9):	490.645	um
Γ		Г							Par	rticle	Size	<u>D</u> i	stribu	tion				_			_	7		
		6															1	Λ						
		5				+	++-			+							1	-			-	-		
	ê	4				_											\vdash	_	ł		_	-		
	Volume (%)	3														1			N			_		
	Nol	2														/						_		
		1				_						1			1					Y	_	_		
		8.0							Ļ															
		0.0	1		0.1				1	Darti	clo S		10 э (µm)			10	0			100	00 3	8000		
F	_7371	/01.2	FCC V	Vest	Cont	rol C	ontro	ol, Ti							9 11:	40:	33 a	. m .						
-	0	1050 1060 1120 1240 450	0.00 0.00 0.00 0.00 0.00		(µm) V 0.980 2.000 3.900 7.800 5.600	0 2 5 7	n % 124 172 159 137	2 4 6 6	9(µm) 9.000 4.000 2.000 2.000 8.000	Volume	1.63 1.90 2.01 2.21 2.85	2	Size (µm) 105.000 125.000 140.000 140.000 210.000		4.23 5.04 5.69 6.25 6.75		Size (µ 300.0 350.0 420.0 500.0 500.0	8	8 4 5	n % 175 111 187 162	84 100	(µm) 1000 1000 1000	Valume in % 0.96 0.39	-

Operator notes:

Malvern instruments Ltd. Malvern, UK Mastersizer 2000 Ver. 5.22 Serial Number : MAL102144

Appendix No.3 - Particle Size Results - Page 1 of 1

MASTERSIZER

Result Analysis Report

Sample 737701.3 Sample S Sample I 2009118	3 JMEC Source bulk lo	083 Su & typ		M rc R	OP Name : larine Sedir leasured b odgers lesult Sour leasuremen	ment y: rce:			Analy	ay, 17 Nov				
Particle I Marine Se Particle I 1.500 Dispersa Nater	edimer RI:	nt		H A 0 D	ccessory I ydro 20000 bsorption: ispersant I .330	∃(A) :			Gener Size r 0.020	nted Resid	000.000	um 1	Sensitivity Enhanced Obscuratio 17.50 % Result Em Off	n:
Concent	tration %V	-			pan : .923				Unifo 0.937	rmity:			Result uni /olume	ts:
Specific).15	Surfac m²/g		a:		urface We 9.985 u	ighted Me um	an D(3	,2]:	Vol V 376.0	Veighted N 09 um	lean D[4	3]:		
d(0.1):	13.	367	um			d(0.5):	292.8	852 ur	n			d(0.9):	869.428	um
Г						Particle	e Size D	Xistributio	n					7
		6									\wedge			
		5									- 1			
	ê	4								1				
	Volume (%	3												
:	20	2												
		_								1				
		1												
		8.0	1	0.1		1		10		100	100	0 300	D	
Ļ	7977	01.0	MEOR	3 Surface, 1	luceday 1			ze (µm)	16 a m					_
E		μm) Vol		Statiace, Statia		za(um) Volum		Size (µm) V		Size (µm) V		Cine Aurel	Volume in %	
	0.	050 060 120 240	0.00 0.00 0.00 0.00	0.980 2.000 3.900 7.800	0.04 1.65 4.04 5.57	37.000 44.000 53.000 63.000	1.50 1.70 1.69	105.000 125.000 146.000 177.000	2.43 2.75 3.10 3.59	300.000 350.000 420.000 500.000	5.19 6.85 7.01 6.70	841000 1001000 2001000	4.48	

Operator notes:

Malvern instruments Ltd. Malvern, UK Mastersizer 2000 Ver. 5.22 Serial Number : MAL102144

Appendix No.4 - Particle Size Results - Page 1 of 1

MASTERSIZER

Result Analysis Report

											-									
	Name: JME08	33 De	ар			SOP N Marine								ured: day, 17 l	Novem	ber 20	009 11:5	6:10	a.m.	
imple \$	1.4 JME083 Deep le Source & type: le bulk lot ref: 18/4					Measu rodger		by:					Analy Tues		Nover	nber 2	009 113	56:11	a.m.	
09118		ref:				Result Measu														
arine S article I 500	Name: ediment RI: ant Nam					Acces Hydro Absor 0 Disper 1.330	2000 ption	IG (A) 1:					Gene Size 0.020	hted Re	ose 200 sidual		um	Enh Obs 18.4	nsitivity: nanced scuratio 48 % sult Emu	n :
oncent 1666	tration: %Vo					Span 2.213	:						Unifo 0.652	rmity:					sult unit ume	S:
ecific 09	Surfac m²/g		a:			Surfac 66.646		eight um	ed Me	an D	[3,2]:		Vol. 1 538.3	Veight e 35 ur		an D[4	, 3]:			
d(0.1):	41.6	14	um					d	(0.5):	47	1.407	um					d(0.9)	: 10	91.551	um
Г		9 -						P	artick	Size	Distrib	itior								٦
		8														λ.				
		7													1	11				
	~	6													1					
	ê	5																		
	Volume (%	4																		
	201	3																		
		2																		
		1																		
		-							_								1			
		8.01	l –		0.1			1			10			100		10	00 30	000		
┝	7377	114	MEO	82 Do	on Ti	losda	v 17	/ Nov			ize (µn 9 11:56		am							-
	Size (µ					umsin%			Volum				ume in %.	Stretu	m) Volur	ne in %	Size (u	m) Val	ume in %.	
	0.0	50	0.00	٥	1980	0.03		37.000 44.000)	0.66	105.00	D	1.23	300.0	00	5.52	840.0	000	7.27	
	0.1	20	0.00	3	1900	1.12		53.00)	0.76	140.00	0	1.51	420.0	00	7.98 8.73	2000.0		13.05	
		_	0.00		1800	2.85		74.00	-	0.80	210.00		2.58			8.86				
	0.4		0.00		.000	2.58		88.000		0.95	250.00		3.60	590.0		9.86				

Operator notes:

Malvern instruments Ltd. Malvern, UK Mastersizer 2000 Ver. 5.22 Serial Number : MAL102144

Appendix No.5 - Particle Size Results - Page 1 of 1

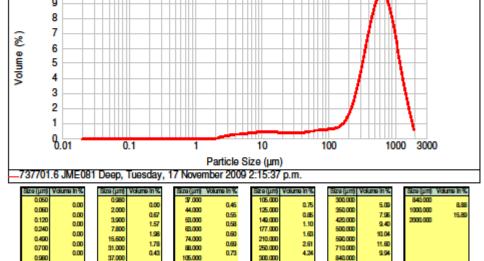
MASTERSIZER

Result Analysis Report

Sample						P Nam						Meas					
737701.8 Sample						anne se asured	diment I by:					Analy		lovembe	r 2009 2:08:	22 p.m.	
Jampie	Source	ayı	e.			igers	, oy.							lovembe	er 2009 2:08	:23 p.m.	
Sample 2009118		t ref:				sult So asuren											
Particle Marine S							y Name:						sis mod			Sensitivity Enhanced	
Marine a Particle		L				dro 200 sorptio							al purpo ange :	58		Obscuratio	n:
1.500					0							0.020	to	2000.0	00 um	20.93 %	
Dispers Water	ant Nan	ne:				spersar 330	nt RI:					Weigt 1.276	nted Res %			Result Em Off	lation
Concen 0.0753	tration: %Vo				Sp 3.3	an : 33						Unifo 1.13	rmity:			Result uni Volume	S :
Specific 0.228	Surfac m∛g		a:			rface V .348	Veighted um	d Mea	an D(3	,2]:		Vol. V 376.5		d Mean N	D[4,3]:		
d(0.1):	8.1	59	um				d (0	.5):	278.	376	um				d(0.9):	935.980	um
Г		_					Par	ticle	Size (Xistribu	tion						7
		6									$\left \right $						
		5															
I	~	-												1	1		
								++			+++			1			
	8	4															1
	me %	4 -												/			1
	Volume (%)	3															
	Volume (%)	·															
	Volume (%)	3							/	-			J				
	Volume (%)	3 - 2 - 1 -							/				J				
	Volume (%)	3 - 2 -	1		0.1		1			10			100		1000 300	00	
	-	3 - 2 - 1 - 8.0	-			Jesdav	Ē			ze (µm			100		1000 300	00	
	_7377	3 - 2 - 1 - 0.0 01.5	-	31 Surfa				vemb	er 20	ze (µm	8:22	p.m.				00	
	-7377 Streij	3 - 2 - 1 - 0.0 01.5	JME08	31 Surfa	ace, Tu	0.14	, 17 No	vemb Volume 1	xer 20 In % 1.87	ze (µm 09 2:0	8:22 Volur	p.m. 141		0 3	94 1000 00	1) Volume In % 0 4.98	
	-7377 Streip 01 01 01 01	3 - 2 - 1 - 0.0 0.0 01.5		81 Surfa Stra (µr 0.98 2.00 3.90	ace, Tu m) Volume eo eo eo	0.14 2.78 6.54	, 17 No 37.000 44.000 53.000	vernb Volume	xer 20 1.87 1.92 1.99	20 (µm 09 2:0 520(µm 105.00 125.00	B:22	p.m. 141 146 150	Size (µr 300.00 350.00 420.00	0 3	94 Stra (un 94 1001.00 29 2001.00	1) Volume In % 0 4.98 0 8.25	
Ē	7377 Bite() 0.1 0.2 0.2 0.2 0.2 0.2	3 - 2 - 1 - 0.0 0.0 01.5	JME08	81 Surfa 820 (µn 0.98 2.00	ace, Tu m) Volume eo eo eo eo eo eo	0.14 2.78	, 17 No 37.000 44.000	vernb Volume 1	oer 20 195 197 192	ze (µm 09 2:0 Sze(µm 105.00 125.00	B:22	p.m. 141 146	Size (µr 300.00 350.00		94 Size (un 94 100100 69 2000	1) Volume In % 0 4.98 0 8.25	

Operator notes:

Malvern instruments Ltd. Malvern, UK Mastersizer 2000 Ver. 5.22 Serial Number : MAL102144


Appendix No.6 - Particle Size Results - Page 1 of 1

Result Analysis Report

Sample Name: 737701.6 JME081 Deep	SOP Name: Marine Sediment	Measured: Tuesday, 17 November 2009 2:15:37 p.r	n.
Sample Source & type:	Measured by: rodgers	Analysed: Tuesday, 17 November 2009 2:15:39 p	o.m.
Sample bulk lot ref: 2009118/6	Result Source: Measurement		
Particle Name: Marine Sediment	Accessory Name: Hydro 2000G (A)	Analysis model: Sens General purpose Enha	itivity: nced
Particle RI: 1.500	Absorption:	Size range: Obsc 0.020 to 2000.000 um 20.36	uration: %
Dispersant Name: Water	Dispersant RI: 1.330	Weighted Residual: Resu 2.708 % Off	It Emulation:
Concentration: 0.2793 %Vol	Span : 1.891	Uniformity: Resu 0.552 Volum	lt units: ne
Specific Surface Area: 0.0614 m∛g	Surface Weighted Mean D[3,2]: 97.709 um	Vol. Weighted Mean D[4,3]: 611.566 um	
d(0.1): 104.544 um	d(0.5): 555.860 um	d(0.9): 115	5.855 um
	Particle Size Distribution	·	
10			
9		++++++++ / - \ ++++	

Operator notes:

Malvern instruments Ltd. Malvern, UK Mastersizer 2000 Ver. 5.22 Serial Number : MAL102144

Appendix No.7 - Particle Size Results - Page 1 of 1

Result Analysis Report

Sample /37701.1		West (2)	Mid surface	SOP Na Marine S					sured: day, 17 Nor	vember 20	09 2:24:1	10 p.m.	
Sample \$	Source &	type:		Measur rodgers					ysed: day, 17 No	vember 20	09 2:24	:11 p.m.	
Sample 1 2009118	bulk lot n /7	ef:		Result & Measure									
Particle I Marine S	Name: ediment				ory Name: 000G (A)				ysis mode l ral purpose			Sensitivity: Enhanced	:
Particle	RI:			Absorp	tion:			Size	range:			Obscuratio	n :
.500				0				0.020) to:	2000.000	um	22.15 %	
	ant Name			Dispers	ant RI:				hted Resid	dual:		Result Emu	ulation
Vater				1.330				0.639	9 %			Off	
Concent	tration: %Vol			Span : 11.448				Unife 3.74	ormity:			Result unit Volume	S:
		_										Volume	
	Surface	Area:			Weighted	Mean D[3,2]:		Weighted	Mean D[4,	3]:		
0.479	m≉/g			12.533	um			91.53	35 um				
d(0.1):	4.826	un	1		d(0.8	5): 21.4	805 ur	n			d(0.9):	254.451	um
Г		_			Part	icle Size	Distributio	n					1
	4	4.5											
		4					$\langle \rangle$						
		-					/ N						
	-	3.5											
	Volume (%)	3						-\					
	9	2.5				- 1		<u> </u>					
	5	2				1							
	20	_				1							
		1.5				1							
		1				1							
	(0.5				1							
						/							
		8.01	0	1	1		10		100	100	0 300	00	
						Particlo	Size (µm)						
	_737701	.11 FC	C 2 West (2	2) Mid su				r 2009 :	2:24:10 p.	m.			1
ŀ				Volume in %	Size(µm) Ve	iume in %.	Size (µm) V	dume in %	Size (µm) 300.000	Volume in %) Volume in %	_
E		Volume In 9									840.00		
E	0.050	0.00	0.980	0.23	37.000	3.36	105.000	2.28		1.50		0.53	
E		0.00	0.980	0.23 6.02	37.000 44.000 53.000	3.28	125.000	2.30	350,000	1.53	1001.00	0.53	
E	0.050 0.060 0.120 0.240	0.0 0.0 0.0	0.980 2.000 3.900 7.800	0.23 6.02 15.03	44.000 53.000 63.000	3.28 2.77	125.000 149.000 177.000	2.30 2.24	350.000 420.000 500.000	1.53 1.23	1002.00	0.53	
E	0.050 0.060 0.120	0.00	0.980 2.000 3.900 7.800	0.23 6.02	44.000 53.000	3.28	125.000 149.000	2.30	350.000 420.000	1.53	1002.00	0.53	

Operator notes:

Malvern instruments Ltd. Malvern, UK Mastersizer 2000 Ver. 5.22 Serial Number : MAL102144

Appendix No.8 - Particle Size Results - Page 1 of 1

MASTERSIZER

Result Analysis Report

Sample 737701.1		2 (Mid) Dee	p Marine	ame: Sediment		Measured: Tuesday, 17 Novemb	ber 2009 2:32:	04 p.m.
Sample S	Source &	type:	rodgers			Analysed: Tuesday, 17 Novem	ber 2009 2:32	:06 p.m.
Sample b 2009118/		ef:	Result Measu	Source: rement				
Particle N Marine Se Particle P	ediment			sory Name: 2000G (A)		Analysis model: General purpose Size range:		Sensitivity: Enhanced Obscuration:
Particle F 1.500 Dispersa Nater		12	0	sant RI:).000 um	22.94 % Result Emulation: Off
Concent	ration: %Vol		Span : 2.325			Uniformity: 0.755		Result units: Volume
Specific).195	Surface m∛g	Area:	Surfac 30.702	e Weighted Mean um	D[3,2]:	VoL Weighted Mean 178.432 um	n D[4,3]:	
d(0.1):	10.32	27 um		d(0.5): 1	52.866 um		d(0.9):	365.727 um
Г				Particle Si	ze Distribution			
		8				· ∧		
		7				/ X		
		6				<i>1</i> -\		
	9	5				11		
	/olur	4				11		
		3						
		2						
		0.01	0.1	1	10	100	1000 30	00
\vdash	79770	1 12 ECC	2 (Mid) Deep, Tue		Size (µm)	•04 n m		
		Volume in %	Size (µm) Volume in %	Study, In Novelini Sze(um) Volume In R			ein% Sze(un	tj. Volume in %
	0.05		0.980 2.000 2.31 3.900 4.97 7.800	37,000 44,000 1.30 53,000 1.31 53,000 1.38	105.000 125.000 146.000 177.000	5.85 300.000 7.50 350.000 8.52 500.000	5.51 840.00 4.77 2.98 840.00	0 0.23
	0.49	0.00	15.600 6.71	74.000 1.75	210.000	8.95 500.000	1.62	

Operator notes:

Malvern instruments Ltd. Malvern, UK Mastersizer 2000 Ver. 5.22 Serial Number : MAL102144

Appendix No.9 - Particle Size Results - Page 1 of 1

MASTERSIZER

Result Analysis Report

Sample Name 737701.17 JN		igh Surf	809	SOP Na Marine S	me: Sediment			Meas Tuesd	ured: ay, 17 Nove	ember 20	09 2:42:)5 p.m.	
Sample Source	ce & type	e:		Measure rodgers	ed by:			Analy Tuesd	sed: ay, 17 Nov	ember 20	009 2:42	:07 p.m.	
Sample bulk 2009118/9	lot ref:			Result S Measure									
Particle Name Marine Sedime Particle RI: 1.500				Accesso Hydro 20 Absorpt 0						000.000	um	Sensitivity Enhanced Obscuratio 22.82 %	n:
Dispersant Na Water	ame:			Dispers 1.330	ant RI:			Weigh 0.496	ted Residu %	ual:		Result Em Off	ulation:
Concentratio	n: Vol			Span : 5.506				Unifo 2.27	mity:			Result uni Volume	ts:
Specific Surf 0.516 m ^a	ace Area ∜g	8:		Surface	Weighted M um	ean D[3	,2]:	Vol. V 59.706	leighted N 5 um	lean D[4,	,3]:		
d(0.1): 4.	431	um			d(0.5) :	22.0	51 un	•			d(0.9):	125.843	um
Volume (%)		01	0.		1 Pa	rticle S	Istributio		100	100	00 300	10	
_737	701.17	JMEO	88 High S	Surface,	Tuesday, 17	Novern	ber 2009	2:42:05	p.m.]
Sec	e(µm) Volu 0.050 0.060 0.120 0.240 0.450 0.700 0.980	00.0 00.0 00.0 00.0 00.0 00.0	Size (µm) V 0.980 2.000 3.900 7.800 15.600 31.000 37.000	oluma in % 0.50 7.19 15.13 18.08 18.30 4.36	Stars (µm) Volu 37.000 44.000 52.000 62.000 74.000 88.000 105.000	4.72 4.80 4.22 3.55 3.33 2.85	Size (µm) Ve 105.000 125.000 146.000 177.000 210.000 250.000 300.000	iuma in % 2.31 1.87 1.47 1.18 0.98 0.84	Size (µm) V 300,000 350,000 420,000 550,000 550,000 710,000 840,000	olume in % 0.61 0.55 0.48 0.48 0.35	Size (µm 840.00 1001.00 2000.00	0.29	

Operator notes:

Malvern instruments Ltd. Malvern, UK Mastersizer 2000 Ver. 5.22 Serial Number : MAL102144

Appendix No.10 - Particle Size Results - Page 1 of 1

MASTERSIZER

Result Analysis Report

Sample Name: 737701.18 JME 088 High Deep	SOP Name : Marine Sediment	Measured: Tuesday, 17 November 2009 2:4	9:16 p.m.
Sample Source & type:	Measured by: rodgers	Analysed: Tuesday, 17 November 2009 2:4	49:17 p.m.
Sample bulk lot ref: 2009118/10	Result Source: Measurement		
Particle Name: Marine Sediment Particle RI: 1.500 Dispersant Name: Water	Accessory Name: Hydro 2000G (A) Absorption: 0 Dispersant RI: 1.330	Analysis model: General purpose Size range: 0.020 to 2000.000 um Weighted Residual: 3.394 %	Sensitivity: Enhanced Obscuration: 23.37 % Result Emulation Off
Concentration: 0.1687 %Vol	Span : 1.974	Uniformity: 0.558	Result units: Volume
Security Conferent America	Profess Weighted Mean DIS 01.	Val Wainbead Masa DVA 91.	
	Surface Weighted Mean D[3,2]: 54.325 um d(0.5): 640.207 u	VoL Weighted Mean D[4,3]: 674.847 um m d(0.9): 1291.196 um
0.11 m∛g	54.325 um	674.847 um d(0.9): 1291.196 um
0	54.325 um d(0.5): 640.207 u	674.847 um d(0.9	i): 1291.196 um
0.11 m∛g d(0.1): 27.275 um 10 9 8 8 7 8 8 6 5 5 0 4 3 2	54.325 um d(0.5): 640.207 u	674.847 um d(0.9	i): 1291.196 um

737701.18 JME 088 High Deep, Tuesday, 17 November 2009 2:49:16 p.m.

37.00

44.000

53,000

63.000

74.000

88.000

105.000

Volume in %

0.53

0.57 0.54 0.53

0.60

105.0

125.000

140.000

177.000

210.000 250.000

300,000

Size (µm 300.000

350,000

420,000

500,000

590.000 710.000

840,000

e in %

3.12

5.48 7.27 8.65

11.13 10.62

in S

0.61

0.60

1.32 2.33

no in St

0.17

1.71 2.88 3.07

2.61 0.57

2.000

3.900 7.800

15.600 31.000

37.000

0.00

0.00

0.00

0.06

0.120

0.240

0.490

0.08

Operator notes:

ents Ltd. m, UK

Mastersizer 2000 Ver. 5.22 Serial Number : MAL102144

File name: Hill ord Number: 227

Size (µm) Volume in % 840.000 (0.40

1000.000

2001.000

10.40

22.52

Appendix No.11 - Particle Size Results - Page 1 of 1

MASTERSIZER

Result Analysis Report

Sample 37701.2	Name: 23 East FCC	New 1 S		Name: e Sediment			Measu Wedne		lovember	2009 9:	23:28 a.m.	
Sample	Source & ty	pe:	Meas	ured by: ars			Analys Wedne		Novembe	r 2009 9	:23:29 a.m.	
Sample 2009118	bulk lot ref: V11			It Source: urement								
Particle Marine S	Name: ediment			ssory Name: 2000G (A)				is model: I purpose			Sensitivity: Enhanced	:
article	RI:		Abso	rption:			Size ra				Obscuratio	n:
.500			0				0.020	to 2	000.000	um	19.65 %	
Dispersa	ant Name:		Dispe	ersant RI:			Weight	ed Resid	ual:		Result Emu	ulation
Vater			1.330	l.			0.446	%			Off	
Concent	tration: %Vol		Span 5.906				Unifor	nity:			Result unit Volume	ts:
						-						
5 респіс).386	surface Are m∛g	98:	5una 15.54	ace Weighted N 2 um	lean D[3,	2]:	91.098		lean D[4,	3]:		
d(0.1):	5.436	um		d(0.5)	: 39.51	9 un	1			d(0.9):	238.834	um
Г				Partic	le Size D	istributio	n					٦
	4											
	3.5											
	<u> </u>							1				
	25 گ				/							
	2				1			- N				
	ິ⊗ 2.5 ອີຟກາວ 15				7			<u>۱</u>				
	S 1.5				-/							
	1				/				XIII			
					/				N			
	0.5								- N			
	٥	0.01									-	
	(0.01	0.1	1		10	1	00	100	0 300	0	
L					article Si							
E	_737701.2	3 East	FCC New 1 Sur	face, Wednes	day, 181	Vovembe	r 2009 9:	23:28 a.r	n.			
		iume in %	Size (µm) Volume in 9	Size(µm) Volu 37.000	me in %	Size (µm) Vo 105.000	iume in %	Size (µm) V 300.000	olume in %	Size (µm)	Volume in %	
					4.29		3.94		1.63		0.36	
	0.050 0.050	0.00	0.980 2.000	6 44 000		125.000		350,000		1000.000		
	0.050 0.060 0.120	0.00	2,000 5.0 3,900 10.5	6 44.000 6 53.000	4.67	149.000	3.74	420.000	1.60	1000.000	0.07	
	0.050 0.060 0.120 0.240	0.00	2.000 5.0 3.900 10.5 7.800 13.2	6 44.000 8 53.000 8 63.000	4.67	149.000 177.000	3.74	420.000 500.000			0.07	
	0.050 0.060 0.120	0.00	2000 0.3 3.900 5.0 7.800 10.5	6 44.000 8 53.000 2 64.000 2 74.000 8 86.000	4.67 4.33	149.000	3.74 3.37	420.000	1.60 1.25		0.07	

Operator notes:

n instruments Ltd. am, UK

Mastersizer 2000 Ver. 5.22 Serial Number : MAL102144

Appendix No.12 - Particle Size Results - Page 1 of 1

MASTERSIZER

Result Analysis Report

		FCC Ne	w 1 D)eep		SOP N Marine			ı					sured inesda		Noven	iber 2	009 9:	31:24 a.m.	
Sample	Source (Measu rodger		by:						lysed Inesd		Nover	nber :	2009 9	31:25 a.m	ι.		
Sample 2009118	icle Name:					Result Measu														
						Acces Hydro									nodel urpose				Sensitivity Enhanced	
Particle	RI:				1	Absor	ptior	1:					Size	rang	9:				Obscurati	ion:
1.500	le bulk lot ref: 118/12 de Name: e Sediment de RI: rrant Name: r entration: 3 %Vol ific Surface Area: m%g 1): 12.280 um 9 8					0							0.02	0	to :	2000.0	00 I	m	24.17 9	6
Dispersa	e Sediment cle RI: ersant Name : or sentration: I3 %Vol ific Surface Area: m∛g					Disper	rsant	t RI:					Weig	ghted	Resid	lual:			Result En	ulation:
Nater					1	1.330							2.61	2	%				Off	
Concent	118/12 cle Name: ne Sediment cle RI: persant Name: persant Name: pr centration: partice Surface Area: ma/g h.1): 12.280 um 9					Span : 2.221	:						Unif 0.67	ormit 5	y:				Result un Volume	iits:
Spacific	Surface	Aroce				Surfac	00 W	aiabt	ad M		13 21.		Vel	Wain	htod	Mean	D [4 9]			
5 pecific 0.16		Ared:				37.600		um		ean D	[3,2]:		587.		um	alear1	olaio	ŀ		
d(0.1):	12.2	30	um					d	(0.5):	54	5.038	ur	n					i(0.9):	1222.73	1 um
Г		o —						F	artic	e Size	Dist	ibuțio	n							
		-																		
		8	+++			+++	+++	++++-	-	+++			++++			- /	1			
		7 —	++						_						_	-+	1			
	~	6															11			
	×	-														1	1			
	e	5	+++			++		++++-	-	+++		-	++++			1				
	1	4	++						_						_	1				
	\$	2														/				
		-													1					
		2	+++			++		++++-	-	+++			++++		1			۲.		
		1 —	++						_			-		Ш.,				1		
		8.01	<u> </u>		0.1			1			10			100			1000	300	n	
		0.01		`	0.1				Der	ticle S				100			1000	000		
F	_73770	1.25	ast	FCC N	lew 1	Dee	0. W	edne					009 9	31:24	l a m					-
		() Volume	_			ume in %			i Volun		_		iume in %.			Volume in		Oren Austr	Volume in %	
			0.00	0.98	80	0.28	1 6	37.00	Ó	0.81	- 10	5.000	0.91		300.000		46	840.000	8.91	
	0.05	9						44.00	a		12	5.000	0.96	1	350.000			1000.000		
	0.05	0	0.00	200		2.55				0.87						5	55		10 40	
C	0.05	0	0.00	2.00 3.90 7.80	00	4.23		53.00 63.00	-	0.82		8.000 7.000	1.07		420.000 500.000	6	90	2001.000	10 40	
	0.05	0 0 0	0.00	3.90	00 00 00			53.00	0 0		17			8		6. 7.		2001.000	10 40	

Operator notes:

Malvern instruments Ltd. Malvern, UK Mastersizer 2000 Ver. 5.22 Serial Number : MAL102144

Appendix No.13 - Particle Size Results - Page 1 of 1

MASTERSIZER

Result Analysis Report

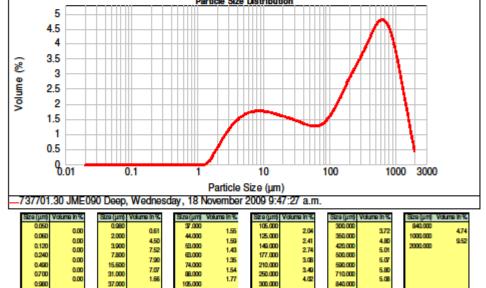
		090 Su	urface		SOP Na Marine S	me: Sediment			Meas Wedn		Novembe	r 2009 9:	40:06 a.m.	
ample	ple Name: 01.29 JME090 Surface ple Source & type: ple bulk lot ref: 118/13				Measure rodgers				Analy Wedn		Novembe	er 2009 9	:40:07 a.m.	
ample 009118		ref:			Result S Measure	iource:								
	Name: Sediment	t				ory Name: 000G (A)				sis model al purpose			Sensitivity Enhanced	:
article	RI:				Absorpt	ion:			Size r	ange:			Obscuratio	n:
.500					0				0.020		2000.000	um	20.25 %	
)ispersa Vater	ant Nam	e:			Dispers 1.330	ant RI:			Weigh 0.522	nted Resid %	lual:		Result Em Off	ulation
oncen	tration: %Vo				Span : 3.952				Unifo 1.51	rmity:			Result uni Volume	ts:
pecific 282	Surfac m∛g		a:		Surface 21.300	Weighted M um	ean D[3	,2] :	Vol. V 154.9	Veighted I 74 um	Mean D[4	,3]:		
d(0.1):	6.97	3	um			d(0.5) :	82.9	11 un	1			d(0.9):	334.677	um
Г						Partic	le Size (Distributio	n					٦
		5.5												
		5								Λ				
		4.5								/ \				
	3	4								4				
	Volume (%)	3.5							- /					
	Ē	3							1					
	-le	2.5		+ + + + + + + + + + + + + + + + + + + +										
	>	2									\			
		1.5		+ + + + + + + + + + + + + + + + + + + +							1			
		1					/				~ ~~			
		0.5										\mathbf{N}		
		в.	01	0.	1	1		10		100	10	00 300	00	
ŀ	_73770	01.29	JMEO	90 Surfac	e, Wedr	Pa lesday, 18 N		ize (µm) er 2009 9:	40:06 a	.m.				-
	Size (pr	m) Volur	ne in %.	Size (µm) V	olume in %	Size(um) Volu	m h %	Size (µm) Vo	iume in %.	Size (uni)	Volume in %	Sze (um	Volume in %	_
	0.0	50	0.00	0.980	0.28	37.000	3.02	105.000	6.02	300.000	2.14	840.000	0.98	
	0.0		0.00	2.000	375	44.000 53.000	3.58	125.000	6.21	350.000	1.82	1000.000	996	
	0.2	40	0.00	7.800	7.29	63.000	3.76	177.000	5.84	500.000	1.29			
	0.4		0.00	15.600	9.68	74.000 88.000	4.90	210.000	4.35	590,000	1.09			
			0.00		2.85		5.62		3.46		0.98			

Operator notes:

instru ments Ltd. am, UK

Mastersizer 2000 Ver. 5.22 Serial Number : MAL102144

Appendix No.14 - Particle Size Results - Page 1 of 1



MASTERSIZER

Result Analysis Report

Sample Name: 737701.30 JME090 Deep	SOP Name : Marine Sediment	Measured: Wednesday, 18 November 2009 9:47:27 a.m.					
Sample Source & type:	Measured by: rodgers	Analysed: Wednesday, 18 November 2009 9:47:28 a.m.					
Sample bulk lot ref: 2009118/14	Result Source: Measurement						
Particle Name: Marine Sediment	Accessory Name: Hydro 2000G (A)	Analysis model: General purpose	Sensitivity: Enhanced				
Particle RI:	Absorption:	Size range:	Obscuration: 23.95 %				
1.500	0	0.020 to 2000.000 um					
Dispersant Name: Vater	Dispersant RI: 1.330	Weighted Residual: 1.097 %	Result Emulation: Off				
Concentration: 0.0670 %Vol	Span : 4.353	Uniformity: 1.4	Result units: Volume				
Specific Surface Area: 0.283 m∛g	Surface Weighted Mean D[3,2]: 21.201 um	VoL Weighted Mean D[4,3]: 370.443 um					
d(0.1): 6.206 um	d(0.5): 223.958 un	n d(0.9)): 981.044 um				
	Particle Size Distributio	n					
5			-				

Operator notes:

ints Ltd. m, UK

Mastersizer 2000 Ver. 5.22 Serial Number : MAL102144

me: Hill ord Number: 231 Appendix No.15 - Particle Size Results - Page 1 of 1

MASTERSIZER

Result Analysis Report

Sample Name: 737701.31 East Control Hunter Brown						SOP Name : Marine Sediment							Measured: Wednesday, 18 November 2009 9:54:45 a.m.									
Sample	Source	e & typ	e:			Measured by: rodgers					Analysed: Wednesday, 18 November 2009 9:54:46 a.m.											
Sample 2009118		t ref:			-	Result Measur																
Particle Marine S						Access Hydro 2										nsitivity: hanced						
Particle	RI:				4	bsorp	tion:					1	Size ı	ange					Ob	scuratio	0:	
1.500					0								0.020		to 2		000	um		94 %		
Dispers Water	ant Nar	me:				Dispers	sant R	l:					Neig).898	hted F	lesidi %	ual:			Ret	sult Emu	ulation:	
Concen 0.1190	tration %V					Span : 1.578							Unifo).438	rmity	:				Result units: Volume			
Specific	- Surfa	ce Are	a.		5	Surface	Wei	nhted	Mean D	13.2	1.	,		Veigh	ted N	lean	DIA	31-				
0.167	m∛(6.010	ur						205.2		um		514	-].				
d(0.1)	: 12	095	um					d(0.5): 21	4.58	1 1	m						d(0.9)	: 3	50.773	um	
[Part	icle Siz	e Dis	tribut	ion									٦	
		14																				
															Λ				1			
		12					++++		+ + +						11							
	%	10																				
	Volume (%	8												Ш.,								
	E	_																	1			
	20	6					++++		++++			\vdash				╂╢						
		4														1						
		2												1		М						
		2										-		1		N			1			
		8.	01	(0.1			1			10			100			100	0 30	000			
								P	article	Size	e (µm))										
	_7377	701.31	East (Control I	Huni	ter Bro	wn S						vemi	oer 20	09 9	:54:4	15 a.	m.			1	
		µm) Volu	ma in %.	Size (µm)		me in %			iurre in %	8	ize (µm)	Volume	in S		(µm) V	(olume l	n%.			ume in %.	_	
		.050 .060	0.00	2,000	-	0.13		7.000 4.000	0.83		105.000 125.000		1.37		000		198	840.0	_	0.00		
		120	0.00	3.900	-	2.22		3.000	0.30		140.000 177.000		4.46 8.96		000		185 2.64	2001.0	00	0.00		
			0.00		-	5.03		2.000 4.000	0.00		210.000		13.43			(161					
		490	0.00	15,600	-	5.48		B.000	0.00		250.000		16.15		000		102					

Operator notes:

am Instruments Ltd. am, UK

Mastersizer 2000 Ver. 5.22 Serial Number : MAL102144

Contact: R C/ P(invironmenta	-	Dat Dat Que Ord Clie	No: e Registered: e Reported: ote No: ler No: ent Reference:	742780 11-Nov-2009 24-Nov-2009 38556	SPi
Sample Type					mitted By:	Mapua Stream R Davidson	
sample type					,		
		mple Name:	Stream Low 17m Surface 10-Nov-2009 2:43 pm	Stream Middle 56m Surface 10-Nov-2009 2:52 pm	Stream Upper 84m Surface 10-Nov-2009 3:02 pm		
	L	ab Number:	742780.1	742780.2	742780.3		
Individual Tests							
Total Organic Ca	arbon	g/100g dry wt	22	2.4	2.5	-	-
Organochiorine	Pesticides Trace	in Soli					
Aldrin		mg/kg dry wt	0.0088	0.0047	0.0075	-	-
alpha-BHC		mg/kg dry wt	< 0.00099	< 0.00099	< 0.00098	-	-
beta-BHC		mg/kg dry wt	< 0.00099	< 0.00099	< 0.00098	-	-
delta-BHC		mg/kg dry wt	< 0.00099	< 0.00099	< 0.00098	-	-
gamma-BHC (LI	indane)	mg/kg dry wt	0.0038	0.0025	0.0028	-	-
cls-chlordane		mg/kg dry wt	< 0.00099	< 0.00099	< 0.00098	-	-
trans-chiordane		mg/kg dry wt	< 0.00099	< 0.00099	< 0.00098	-	-
2,4'-DDD		mg/kg dry wt	0.34	0.19	0.36	-	-
4,4'-DDD		mg/kg dry wt	0.93	0.30	1.1	-	-
2,4'-DDE		mg/kg dry wt	0.20	0.11	0.18	-	-
4,4'-DDE		mg/kg dry wt	12	0.32	1.2	-	-
2,4'-DDT		mg/kg dry wt	0.041	0.027	0.12	-	-
4,4'-DDT		mg/kg dry wt	0.20	0.14	2.4	-	-
Dieldrin		mg/kg dry wt	0.076	0.054	0.050	-	-
Endosulfan I		mg/kg dry wt	< 0.00099	< 0.00099	< 0.00098	-	-
Endosulfan II		mg/kg dry wt	< 0.00099	< 0.00099	< 0.00098	-	-
Endosulfan sulp	hate	mg/kg dry wt	< 0.00099	< 0.00099	< 0.00098	-	-
Endrin		mg/kg dry wt	< 0.00099	< 0.00099	< 0.00098	-	-
Endrin aldehyde	•	mg/kg dry wt	< 0.00099	< 0.00099	< 0.00098	-	-
Endrin Ketone		mg/kg dry wt	< 0.00099	< 0.00099	< 0.00098	-	-
Heptachior		mg/kg dry wt	< 0.00099	< 0.00099	< 0.00098	-	-
Heptachior epox	ide	mg/kg dry wt	< 0.00099	< 0.00099	< 0.00098	-	-
Hexachiorobenzi	ene	mg/kg dry wt	< 0.00099	< 0.00099	< 0.00098	-	-
Methoxychior		mg/kg dry wt	< 0.00099	< 0.00099	< 0.00098	-	-
Total Chlordane 100/42]	((cls+trans)*	mg/kg dry wt	< 0.0020	< 0.0020	< 0.0020	-	-

Appendix No.1 - Particle Size Analysis Report

Appendix No.2 - Particle Size Analysis Report

international Accreditation New Zealand (IANZ), which represents New Zealand in the international tion (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is This Laboratory is accredited by inte Laboratory Accreditation Cooperation Internationally recognised. Internationally reco The tests reported

ith the terms of accreditation, with the exception of tests marked ", which

SUMMARY OF METHODS

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Sample Type: Sediment			
Test	Method Description	Default Detection Limit	Samples
Environmental Solids Sample Preparation	Air dried at 35°C and sleved, <2mm fraction.	-	1-3
	Sonication extraction, SPE cleanup, GPC cleanup (If required), dual column GC-ECD analysis	-	1-3
	Malvern Laser Sizer particle size analysis. Subcontracted to Earth Sciences Department, Walkato University, Hamilton.	-	1, 3
Total Organic Carbon	Acid pretreatment to remove carbonates if present, Elementar Combustion Analyser.	0.050 g/100g dry wt	1-3

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This report must not be reproduced, except in full, without the written consent of the signatory.

477

Ara Heron BSc (Tech) Client Services Manager - Environmental Division

Lab No: 742780 v 1

Hill Laboratories

Page 2 of 2

Appendix No.1 - Particle Size Analysis Report - Page 1 of 1

MASTERSIZER

Result Analysis Report

Sample Name: 742780.1 Stream Low 17m Surface				SOP Name: Marine Sediment					Measured: Wednesday, 18 November 2009 11:22:21 a.m.								
Sample S	Source & typ	e & type: Measured by: Analysed:						Analysed:									L
Sample b 2009126/	bulk lot ref: /1			lesult Sc Aeasurer		,,											
Particle I Marine Se				Accessor	y Name: DOG (A)				is model: I purpose			Sensitivity: Enhanced	:				
Particle P	RI:			bsorptio				Size ra				Obscuratio	n:				
1.500			0	, '				0.020		000.000	um	18.23 %					
Dispersa	ant Name:		D)ispersa	nt RI:			Weight	ted Residu	ual:		Result Emu	ulation:				
Nater			1	.330				0.612	%			Off					
Concent	tration: %Vol			5pan : 2.478				Unifor 3.38	mity:			Result unit Volume	ts:				
Snacific	Surface Are			Surface V	Neighted M	leen DP	21.	Vol W	eighted M	lean DM	91 -						
0.355	m²/g			6.906	um	an ola	9 ~] .	179.89			-J.						
d(0.1):	5.801	um			d(0.5)	: 48.1	49 un	n			d(0.9):	606.576	um				
Г					Partic	ale Size I	Distributio	n					٦				
	3.5																
									N								
	3						\sim	/	1								
	2.5																
	č Š					1			1 N I								
	e 2 0 1.5					- 1			- \ +								
	a 1.5									\sim							
	>					1											
	1					1					\ ⊢∣						
	0.5					/											
	0.5										N 1						
	8	.01	0.1		1		10		100	100	0 300	0					
			0.1							100	0 300	~					
E	742780.1	Stream	Low 17m S	Surface.			ize (µm) Vovember	2009 11	22:21 a.r	n.			-				
	Size (µm) Voi		Size (µm) Volu		Size(um) Vol.		Size (um) Vo		Size (µm) Ve		Stratum	Volume in %					
			0.980		37.000	3.45	105.000	3.95	300.000	1.44	840.000	104					
	0.050	0.00					125,000	2.20	350,000	1.444	1000.000	1.29					
	0.060	0.00	2.000	0.18 4.39	44.000	3.93		3.19		1.75		4 16					
		0.00	2.000 3.900 7.800	4.39 10.56	44.000 53.000 63.000	3.82	149.000	2.70	420.000	1.81	2001.00	4 16					
	0.060	0.00	3.900	4.39	53.000		149.000		420.000			4 16					

Operator notes:

n instruments Ltd. am, UK

Mastersizer 2000 Ver. 5.22 Serial Number : MAL102144

Appendix No.2 - Particle Size Analysis Report - Page 1 of 1

MASTERSIZER

Result Analysis Report

Sample Name: 742780.3 Stream Upper 84m Surface				SOP Name: Marine Sediment					Measured: Wednesday, 18 November 2009 11:30:51 a.m.															
Sample	Source & t	/pe:		Measured by: rodgers				Analysed: Wednesday, 18 November 2009 11:30:52 a.n																n.
Sample 2009126	bulk lot ref /2	:		Result S Measure																				
Particle Marine S	Name: ediment			Accesso Hydro 20	ory Name: DOOG (A)				sis model: al purpose			Sensitivity Enhanced	12											
Particle	RI:			Absorpt	ion:			Size n	ange:			Obscuratio	on:											
1.500				۰ ·				0.020	to 2	000.000	um	21.58 %												
Dispersa	ant Name:			Disperse	ant RI:			Weigh	nted Resid	ual:		Result Em	ulation:											
Nater				1.330				0.944	%			Off												
Concent	tration: %Vol			Span : 6.465				Unifo 1.96	rmity:			Result uni Volume	its:											
					Weinherd M	D0			la indus de	D**														
5 pecific).212	surface A m∛g	rea:		28.325	Weighted M um	ean U[:	3,2]:	303.61	Veighted N 19 um	nean u[4,	al:													
d(0,1):	9.383	um			d(0.5);	: 133.	.521 ur	n			d(0.9):	872,629	um											
Г					Dortio	la Ciza	Distributio						7											
		4																						
	3.	5								$\mathbf{\Lambda}$														
		_								/ Ν														
		3																						
	ê 2	5																						
	0										1													
	2. emnos 1.	2									1													
	Ī 1.	5					/																	
						. /					111													
		1				1																		
	0.	5																						
											11													
		0.01	0.1	1	1		10		100	100	00 300	0												
					Pa	article S	Size (µm)																	
F	_742780.	3 Stream	n Upper 84	im Surfa	ice, Wednes			er 2009	11:30:51	a.m.														
	Size (µm)	dume in %	Size (µm) Vo	olume in %	Sze(µm) Volu	ne in %	Size(µm) V	dume in %.	Size (µm)	Volume in %		Volume in %												
	0.050	0.00	2.000	0.04	37.000 44.000	2.50	105.000	3.25	300.000	3.14	84100	3.59												
	0.120	0.00	3,900	2.10	53.000	2.73	149.000	3.42	420.000	3.85	2001.000	7.94												
						2.02	177.000	2.99	500,000	2.00														
	0.240	0.00	7.800	8.86	63.000	2.55		3.44		3.67														
			7,800 15,600 31,000		62.000 74.000 98.000	2.55 2.89 3.12	210.000	3.44 3.50 3.65	500.000	3.67 4.40 3.85														

Operator notes:

n instruments Ltd. am, UK

Mastersizer 2000 Ver. 5.22 Serial Number : MAL102144

Appendix 7. Percentage of total sample > 2000 μ m.

Sample Name	>2000
737701.1 FCC West Control Surface	29.73
737701.2 FCC West Control Control	6.96
737701.3 JME083 Surface	18.72
737701.4 JME083 Deep	72.56
737701.5 JME081 Surface	35.53
737701.6 JME081 Deep	60.47
737701.11 FCC 2 West (2) Mid surface	0.00
737701.12 FCC 2 (Mid) Deep	0.00
737701.17 JME088 High Surface	0.00
737701.18 JME 088 High Deep	56.22
737701.23 East FCC New 1 Surface	8.85
737701.25 East FCC New 1 Deep	62.04
737701.29 JME090 Surface	15.25
737701.30 JME090 Deep	54.80
737701.31 East Control Hunter Brown Surface	2.28

Appendix 8. Summary of % composition of particle < 2000 μ m

	% Clay	% Silt	% Sand	% Gravel
Sample Name				
737701.1 FCC West Control Surface	0.11	20.20	50.00	29.73
737701.2 FCC West Control Control	0.22	27.72	65.05	6.96
737701.3 JME083 Surface	0.03	18.96	62.31	18.72
737701.4 JME083 Deep	0.01	3.21	24.18	72.56
737701.5 JME081 Surface	0.09	22.14	42.27	35.53
737701.6 JME081 Deep	0.00	3.16	36.34	60.47
737701.11 FCC 2 West (2) Mid surface	0.23	71.32	28.45	0.00
737701.12 FCC 2 (Mid) Deep	0.15	26.49	73.36	0.00
737701.17 JME088 High Surface	0.50	77.39	22.12	0.00
737701.18 JME 088 High Deep	0.08	5.46	38.26	56.22
737701.23 East FCC New 1 Surface	0.32	55.85	34.92	8.85
737701.25 East FCC New 1 Deep	0.11	6.93	30.96	62.04
737701.29 JME090 Surface	0.24	36.12	48.44	15.25
737701.30 JME090 Deep	0.27	15.01	29.91	54.80
737701.31 East Control Hunter Brown Surface	0.12	19.13	78.44	2.28